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I. Introduction

Development of woven, knitted, braided and stitched materials and structures for

application on primary structures of commercial transport aircraft has been conducted by NASA

during the period from 1985 to 1997. Different composite types have been identified for use in

particular parts of airframe structures.1 Because of these new advanced materials and structures,

as well as the application of advanced processing methods, there is a need to develop new

nondestructive evaluation (NDE) methods to address the new demands. Nondestructive evaluation

methods applicable to post-production inspection of component integrity as well as methods

applicable to process control in manufacturing are important to successful implementation of these

materials. The successful development and implementation of quantitative ultrasonic

nondestructive evaluation techniques applied to the characterization of advanced materials requires

a methodic investigation of many important questions. The interaction of an interrogating

ultrasonic field with the inherent physical properties of these advanced materials needs to be

addressed. Textile composites with through-the-thickness reinforcement offer a challange to the

NDE community. By their very nature these composites represent a phase distorting anisotropic

medium. Investigations focused on whether ultrasonic NDE methods which work well with more

conventional composite materials can be applied to the new, more complex, material systems are

essential.

In this final report we summarize our recent developments of advanced ultrasonic

nondestructive evaluation methods applied to the characterization of anisotropic materials. An

electronic version of this report has been included on the accompanying CD-ROM in the Adobe TM

Portable Document Format (PDF).



A. References

1. Marvin B. Dow and H. Benson Dexter, "Development of Stitched, Braided and Woven
Composite Structures in the ACT Program and at Langley Research Center (1985 to 1997)",
NASA, Technical Publication, Report Number: TP-97-206234, (November 1997, 1997).
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II. Ultrasonic Field Parameters (June 1996 to December 1996)

The use of an ultrasonic wave propagation model in conjunction with measured data is

investigated to enhance the understanding of the physics underlying the interaction of ultrasound

with anisotropic materials, such as multiaxial warp-knit composites and other fiber-reinforced

specimens. We present images obtained from experimental measurements and simulations of

ultrasonic fields in water. Furthermore, the simulation is extended to produce images of ultrasonic

field propagation through a woven fiber composite material with values of the anisotropy of the

attenuation coefficient based on knowledge of previous work by our group, i For reasons of image

resolution, all images have been included on the accompanying CD-ROM in Adobe TM Portable

Document Format (PDF).

In Section II.A we describe the implementation of the ultrasonic wave propagation model we

employed. In addition, we biiefly address concerns related to the ultrasonic beam, such as

diffraction and phase cancellation across the face of a finite-aperture, phase-sensitive receiving

transducer. Section II.B describes the experimental arrangement and methods for acquiring the

ultrasonic diffraction patterns. Following the description of the data acquisition technique, Section

II.C details the analysis of the experimental data and the methods of the simulations. In Section

II.D, the resulting images of the ultrasonic diffraction patterns derived from experimental data are

compared with model simulations (See CD-ROM for images). A discussion of the observations

and conclusions are found in Section II.E.

A. Background

The overall goal of this research is to enhance the understanding of the scientific principles

necessary to successfully develop advanced ultrasonic materials characterization methods required

for the inspection of complex fiber-reinforced material structures. A specific goal of our proposed

research is to understand the fundamental physics underlying the interaction of ultrasonic fields



with the inherent physical properties of these complex material structures. This includes

developinganunderstandingof how ultrasonicfields propagatein thesematerialsby examiningthe

propagationof the phase-frontsand energy of the ultrasound in these inherently anisotropic

materials.

In orderto developarobustmeasurementmethodfor nondestructiveevaluationof anisotropic

materials,it is necessaryto havean understandingof thediffraction of theultrasonicfield within

themedia. Diffraction of the ultrasonicfield can occur for a variety of reasons,including the

intrinsicnatureof aspecificsample(specificintrinsic textilecompositeparameters,i.e., tow sizes,

layup configuration, etc.), surfaceroughness(both randomandperiodic), externalstitching, and

inhomogeneities. In addition, the experimentalsampling of the ultrasonic field may be

compromiseddue to phasecancellationeffects acrossthe face of the receiving transducer2,3.

Computersimulationscan be utilized in developinga more fundamentalunderstandingof the

effects that phase-distortinganisotropic materials can have on the diffraction pattern and

propagationcharacteristicsof the interrogatingultrasonicwave.

There are a number of ultrasonic wave propagation models available for numerical

implementation,such as the MeasurementModel4, the Wisconsin Method5,6and the Angular

SpectralDecompositionmethod7-12,to namea few. Eachmodelhasits advantages.The Angular

SpectralDecompositionmethodoffersa numericallyefficientalgorithm. For this reason,asa first

stepwe havechosento employtheAngularSpectralDecompositionmethodasa tool for modeling

ourexperimentalarrangements.

A.1 Approach

Our approach toward understanding the diffraction of ultrasound within anisotropic materials

is to progress systematically from structurally simple specimens to more complex structured

composite specimens. This systematic approach facilitates the understanding of how increasing
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structuralcomplexity affectsthe ultrasonicdiffraction pattern. Initial investigations of ultrasonic

diffraction patterns were conducted in water only. Subsequent investigations modeled the effects

of inserting a woven fiber composite specimen into the ultrasonic field.

B. Experimental Arrangement and Method

All measurements in this study were performed in an immersion tank using a 0.5" diameter,

spherically-focused (2" focal length), piezoelectric transducer of a nominal center frequency of 10

MHz (Panametrics V311) as the transmitting transducer. A 1 mm diameter PVDF, broadband,

needle hydrophone (Force Institute) was used as the receiving transducer. The receiving

hydrophone was scanned in a series of planes (32 sites by 32 sites with 0.5 mm separation

between sites, 15.5 mm by 15.5 mm area total) at axial positions of l", 2", and 3" from the

transmitting transducer. These positions permitted measuring the ultrasonic field before the focal"

zone, within the focal zone, and after the focal zone of the transmitting transducer.

Figure 1 is a schematic diagram showing the data acquisition system used in this investigation.

The ultrasonic signal sent to the transmitting transducer was a broadband pulse generated by a

Metrotek MP215 pulser. The ultrasonic signal received by the hydrophone was initially sent

through a unity-gain preamplifier (Force Institute) matched specifically to the hydrophone,

providing 50 _2 coupling to the receive-side electronic equipment. The signal was then sent

through a pair of step attenuators (HP 355 series) that permitted a more precise adjustment of the

signal amplitude to prevent saturation of the input stage of the receiving electronic equipment.

Further amplification was achieved by sending the received signal through a Metrotek MR106 rf

amplifier. The rf signal was digitized with a Tektronix 2430A digital oscilloscope. An Apple

Macintosh II computer was used to read the rf time traces and store them for off-line analysis.

At each site of the pseudo-array, 64 time traces were acquired and averaged off-line before

being stored to disk. Each rf time trace consisted of 1024 points sampled at 250 MegaSamples/s

(0.004 Its sampling period). The digital oscilloscope was externally triggered by the
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synchronizationpulseprovidedby theMP215 pulser. The dataacquisitiondelaytime (relativeto

thetrigger signal)wassetmanuallysuchthatthereceivedtracewaslocalizedwithin the acquisition

window.

IEEE-488 IEEE-488

Apple 2438R
Macintosh I I Digital

Oscilloscope

I Metrotek I
MP 215

Pulser J

Transmitting
Transducer

Receiving _'_J

Hydrophone

force Instltote_

,re.m,,,,,..J -L HP355C& _ Metrotek 1
355D MR 186

Attenuators Receiver

Figure 1: Experimental arrangement of data acquisition equipment

C. Data Analysis and Modeling

Data analyses and computer modeling were performed using in-house custom software written

in the C programming language on a Power Macintosh. These routines performed all the

necessary tasks to calculate and visualize the simulated ultrasonic diffraction patterns, based on

either the simulated or experimentally measured ultrasonic fields, using the method of Angular

Spectral Decomposition. In order to construct images of continuous-wave ultrasonic fields, it was

necessary to calculate the in-phase and quadrature parts of the pressure field measured at each

pseudo-array scan site. The averaged rf time trace acquired at each pseudo-array site was Fast

Fourier Transformed. The real and imaginary parts of the Fourier transform corresponded to the

in-phase and quadrature parts, respectively, of the received pressure field spectra. In order to use



datafrom thebroadbandmeasurementsin the continuous-wavebasedmethodof Angula( Spectral

Decomposition,single-frequencydatawasextractedfrom thein-phaseand quadraturecalculations

providing narrow-band in-phaseand quadraturerepresentationsof the field measuredwith the

pseudo-array. Thesenarrow-bandrepresentationswerethen importedinto the in-housecustom-

designedsoftwareprogramto permitvisualizationof thepropagatedpressurefields.

C.1 Propagations from Experimentally Measured Field

For the experimental water path data, we imported the in-phase and quadrature parts of the

experimentally measured pressure field at single frequencies (5.13 MHz, 7.08 MHz, and 11.2

MHz) at the receiver plane for each of the positions from the transmitting transducer (1", 2", and

3"). We zero-padded our 32 x 32 single-frequency in-phase and quadrature parts of the pressure

field to 64 x 64 in order to minimize boundary effects (which can occur in the Fourier projection"

technique if array size is too small) as the fields were propagated. We applied a radial (from the

center of the pseudo-array) Hanning window to the zero-padded in-phase and quadrature parts of

the pressure field so as to prevent sharp discontinuities due to the padding. The measured

ultrasonic pressure field was back-propagated to the transmitting transducer plane. Furthermore,

the measured ultrasonic pressure field was forward-propagated to a distance of 4" from the

transmitter transducer plane. (See Figure 2 on CD-ROM for an illustration of this procedure.) The

distance between planes of propagation was 1 mm. The resulting diffraction patterns for the

meridian plane views and the receiver plane views were constructed.

C.2 Propagations from Simulated Field

For visualizations of the simulated ultrasonic fields through water, we modeled our ultrasonic

source as a 0.5" diameter, spherically-focused piston. Similar to our experimental data analysis,

we used a 64 by 64 array with a 0.5 mm between sites. The distance between planes of

propagation was 1 ram. We then propagated a single-frequency (5.13 MHz, 7.08 MHz, or 11.2



MHz) ultrasonic field for comparison to the experimentalmeasurement. We simulated the

ultrasonicpressurefield thatthehydrophonepseudo-arraywould seeat distancesof 1", 2", and 3"

from the sourceplane. We also simulatedthe magnitudeof the pressurefields in the meridian

planefor adistanceof up to 4" from thesourceplane.

C.3 Propagations from Experimentally Measured Field through Woven Composite

Model

In order to build intuition of the diffraction effects due to anisotropic media, we simulated

ultrasonic wave propagations through woven fiber composites. A woven fiber composite would

diffract the ultrasonic field for several reasons, including: attenuation anisotropy, phase velocity

anisotropy, and refraction at the woven layers due to non-normal incidence of ultrasound onto the

warp and fill. As a first step in modeling an anisotropic material, our composite model consisted

of a five-harness biaxial weave pattern, with the visible warp regions having 50.% of the

attenuation of the visible fill regions. The relative attenuations of the woven composite were

chosen based on experimental measurements from previous work by this group i. An image of our

composite model is shown in Figure 13 (see CD-ROM), with darker regions corresponding to the

fill and the lighter regions corresponding to the warp of the weave pattern.

We imported the narrow-band (5.13 MHz) in-phase and quadrature parts of the pressure field

measured by the hydrophone pseudo-array positioned 2" from the transmitting transducer. We

again zero-padded our 32 x 32 narrow-band in-phase and quadrature parts of the pressure field to

64 x 64 in order to avoid boundary effects as the fields were propagated. Similarly, we applied a

radial (from the center Of the pseudo-array) Hanning window to the zero-padded in-phase and

quadrature parts of the pressure field so as to prevent sharp discontinuities due to the padding. To

simulate the attenuation of a thin woven fiber composite coupon, we propagated the ultrasonic

pressure field through the composite model, positioned at the focal plane of the transmitting

transducer, to a distance 10 mm past the composite model. We generated images of the diffraction



patternsfor the receiverplaneviews of the magnitude, in-phase, and quadrature parts of the

pressure field. The inclusion of the in-phase and quadrature images for the woven fiber composite

investigation permits insight into the nature of phase cancellation across the face of the receiver

transducer.

The experimental and simulated propagated fields were saved to disk and imported into a

commercial imaging software package (Transform 3.3, Fortner Research LLC, Sterling, VA) for

final production of the ultrasonic pressure field images. In the pressure magnitude images

(receiver plane view image and meridian plane view two-dimensional image and surface plot),

darker regions correspond to larger relative pressure magnitudes and lighter regions correspond to

smaller relative pressure magnitudes. However, for the in-phase and quadrature parts of the

pressure field, a blue to white to red color table has been used. Blue regions correspond to

negative values, red regions correspond to positive values, and white regions are neutral. We

chose to crop the receiver plane views of the ultrasonic in-phase, quadrature, and magnitude fields

so that only the original 32 by 32 grid was shown. Cropping the images permitted zooming the

region of interest and displaying the image on a scale exhibiting finer resolution.

D. Results

In this Section we discuss the images of the pressure magnitudes of the ultrasonic field in a

meridian plane view and the receiver plane view, and images of the in-phase and quadrature parts

of the pressure field in the receiver plane view. The images discussed here are for a single

frequency (5.13 MHz) extracted from the broadband measurements. Two-dimensional images are

shown of the magnitude of the pressure field at the receiver plane view for the water-path

simulations and experimental data. We also include two-dimensional images and surface plots of a

meridian plane view of the water-path simulations and experimental measurements. For the woven

fiber composite simulation, we include two-dimensional images of the magnitude, in-phase, and
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quadratureparts of the pressurefield in thereceiverplaneview. PleaseseeCD-ROM for all the

imagesdiscussedin thisSection.

The meridianplaneviews have dimensionsof ~1.5 inchesby 4.0 inches. (Pleasenote the

aspectratio of 2.25:1.) The receiverplaneviews representdimensionsof ~0.75 inchesby ~0.75

inches. In Figures3 to 5 andFigures7 to 12,thesimulatedimagesareconstructedusing the same

uniformly-excitedspherically-focusedpiston sourceparameters,and areprovided in eachfigure

for direct comparisonto thedifferentexperimentalsituations.

Figure3 comparestheultrasonicdiffraction patternin a meridianplaneof the water-pathonly

simulationandthatobtainedbasedon thefield measurementsof the receivinghydrophone1" from

the transmittingtransducer. Figures 4 and 5 show similar images, with the position of the

receivinghydrophonenow at 2" and 3", respectively,from thetransmittingtransducer. Figure 2

shows the positioning of the transmittingtransducerin relation to the propagatedfield in the

meridianplane. In Figures3 to 5 therearegood qualitativeagreementbetweensimulationsource

and experimentallymeasuredsourcein the depth and width of the focal zone. We also see

agreementin the initial convergenceof thesourceto thefocal zoneandthesubsequentspreadingof

theultrasonic field, asonewouldexpectfrom afocusedtransducer.

Figures 7 to 9 are surfaceplots of the pressuremagnitudesin the meridian plane. These

figurespresentinformationaboutthepressuremagnitudeof thesourceacrossits face, in addition

to the focal zone informationof theultrasonicfield. Figure 6 shows a cartoon that identifies the

position of the transmitting transducer relative to the surface plot of the ultrasonic field. In the

upper left side of each surface plot, the transmitting transducer radiates downward to the right. In

addition to the grayscale coding of the relative pressure magnitudes, the height of the surface plot

corresponds to the relative pressure magnitude. (Please note the 2.67:1 aspect ratio in the plane

normal to pressure magnitude.) We can make the same qualitative comments regarding the focal

zone as we did for Figures 3 to 5. In addition, the back-propagation of the experimentally received

ultrasonic fields to the source plane shows the departure from our model of a uniformly excited

piston source. We observe a gradual decline in pressure magnitude as we move to the edge of the
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transducerfor theback-propagatedexperimentallymeasuredfields. This raisesthe concernof the

validity of modeling our source as being uniformly excited, or of the validity of the back-

propagationmodel itself. We will addressthis further in SectionII.E.

Figures 10 to 12 comparethe Ultrasonicdiffraction patterns in the receiverplane of the

simulationand the water-pathonly experimentaldataat 1", 2", and 3", respectively. Again, we

find good agreementbetweensimulationandexperimentalmeasurementfor the relativepressure

magnitudesandthe3 dB-downregions(asnotedby thereddashedcircle) from thepeakpressure.

Figure 13shows an imageof theattenuationmaskof thewoven fiber specimenmodel. As

mentionedpreviously,thedarkerregionsin the imagecorrespondto regionsof moreattenuation,

and the lighter regions correspondingto regionsof less attenuation. Figures 14 to 22 contain

imagesof the in-phasepart,quadraturepart,andmagnitudeof the pressurefields of theultrasonic

diffraction patternin the receiverplane10mm beyondfocalplane.Figures 14 to 17comparethe

in-phasepartsof thepressurefields of water-pathonly and through thecomposite model using

different color tablesanddataranges. By modifying therangeof dataimagedand adjustingthe

color table,we areableto emphasizedifferent featuresof the images. Figures 14 and 15 use a

linearcolor table. Figures 16 and 17, however, usea non-linearcolor table which emphasizes

changesin thesignof the in-phasepartof thepressurefield. Similarly, Figures 18 to 21 compare

the quadraturepartsof thepressurefields of water-pathonly and through the compositemodel

usingdifferent color tablesanddataranges. We recognizea slight distortionof the in-phaseand

quadraturepartsof thepressurefield throughthecompositespecimenmodelascomparedto the in-

phaseandquadraturepartsof thepressurefield of thewater-pathonly by comparingthe shapeof

thecentralpositive(red) region. However,in the imagesof themagnitudeof thepressurefield it

is moredifficult to discernchangesbetweenthroughwater-pathonly and through the composite

model,asevidencedin Figure22. (Pleasenotesimilarity of 3 dB-downregionshighlightedby the

reddashedlines.)
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E. Discussion

We have implemented a systematic approach to enhance the understanding of the physics

underlying the interaction of ultrasound with anisotropic materials. Initial investigations were

performed to validate our technique of using an Angular Spectral Decomposition method to

simulate experimental situations. In Figures 7 to 9, we compared the simulated source to the

source predicted from back-propagation of the measured ultrasonic field. In future work, it may be

advantageous to simulate a source with a smooth pressure variation out to the edge in contrast to a

uniformly-excited piston source.

We extended our use of the Angular Spectral Decomposition method to model the possible

effects that would occur in an anisotropic woven fiber composite. As a first step, we have

considered only the magnitude attenuation effects, neglecting other pertinent effects, including

phase velocity anisotropy and refraction at the surface that may occur. We observed in Figures 14

to 21 phase alterations, as compared to a water-path only signal, which could possibly produce

phase cancellation across the face of the interrogating phase-sensitive transducer, thus

underestimating the signal strength. Furthermore, knowledge of the diffraction effects of the

anisotropy of the material will aid in linear, 1.5, and two-dimensional array beam forming.

These observations lead to several issues of concern for further investigation. In our model of

a woven fiber composite, we have chosen a small tow size. It is worth investigating how adjusting

tow size can affect the received signal. Furthermore, we have shown images constructed for 5.13

MHz. Increasing frequency will permit finer resolution of the constructed images. However, in

the pursuit of a robust measurement technique, it is worth considering the issue of focal spot size

versus spatial averaging.
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III. Dependence of Pressure Magnitude on Frequency for Ultrasonic

Measurements of a Woven Cloth (December 1996 to June 1997)

Previously 1, we proposed a simple model to simulate the effect of a thin woven composite

on an insonifying ultrasonic pressure field. This initial approach provided an avenue to begin

development of a robust measurement method for nondestructive evaluation of anisotropic

materials. We extend that work by performing experimental measurements on a single layer of a

five-harness biaxial woven composite to investigate how a thin, yet architecturally complex,

material interacts with the insonifying ultrasonic field.

In Section III.A of this Progress Report we describe the experimental arrangement and

methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin

woven composite. We also briefly describe the thin composite specimen investigated. Section

III.B details the analysis of the experimental data followed by the experimental results in Section

III.C. Finally, a discussion of the observations and conclusions is found in Section III.D.

A. Experimental Arrangement and Methods

All measurements in this study were performed in an immersion tank using a set of 0.5"

diameter, spherically-focused (4" focal length), piezoelectric transducers with nominal center

frequencies of 5 MHz, 10 MHz, and 15 MHz (Panametrics V309, V311, and V319, respectively)

as the transmitting transducer. For notational purposes, we refer to the different transducers by

their nominal center frequency (i.e., the 5 MHz transmitting transducer). The thin woven

composite was positioned in the focal plane of the transmitting transducer and oriented normal to

the beam axis of the transducer. The thin composite, as mentioned above, is a single layer (less

than 1 mm thick) of a five-harness biaxial weave. A 1 mm diameter PVDF, broadband, needle

hydrophone (Force Institute, Type MH28-10) was used as the receiving transducer. The receiving

hydrophone was positioned 120 mm from the transmitting transducer (approximately 20 mm from
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the backside of the specimen). In the receiving plane, the hydrophone sampled the ultrasonic

pressure field in a two-dimensional pseudo-array manner 2. The pseudo-array was composed of 64

sites by 64 sites (4096 total sites) with 0.5 mm separation between adjacent sites for a total

sampled area of 31.5 mm by 31.5 mm.

Figure 1 is a schematic diagram showing the data acquisition system used in this

investigation. The transmitting transducer was excited with a broadband pulse generated by a

Panametrics 5800 pulser/receiver. The ultrasonic signal received by the hydrophone was initially

sent through a unity-gain preamplifier (Force Institute, Type BAS) matched specifically to the

hydrophone, providing 50 fl coupling to the receive-side electronic equipment. The signal was

then sent through a pair of programmable attenuators (HP 8494G and 8496G) that permitted

precise adjustment of the signal amplitude to prevent saturation of the input stage of the receiving

electronic equipment and to maximize the dynamic range of the oscilloscope. From the attenuators,

the received signal went to the receiving stage of the Panametrics 5800 pulser/receiver, and finally

on to a Tektronix 2430 digital oscilloscope for digitization. An Apple Macintosh Ilfx computer

utilized in-house custom software written in the C programming language to acquire the rf time

traces and store them for off-line analysis.
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Figure 1: Experimental Setup.

It is a goal of this experimental research to understand how systematic variations of the

acquisition system, as well as changes in the materials investigated, affect the quantitative

evaluation of these materials. The first physical parameter we chose to vary systematically was the

nominal center frequency of the transmitting transducer. Three transmitting transducers were

employed for the acquisition of the experimental data discussed within this report.

Prior to pseudo-array scanning of the ultrasonic beam through the thin composite, dynamic

range measurements of the experimental system with the thin composite inserted were performed

for each transmitting transducer. At the origin of the pseudo-array, a series of rf traces were
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acquiredwith the insertionof a rangeof attenuations(0 dB to 60 dB in 5 dB steps). At each

attenuationsetting, 64 rf timetraceswere acquiredand averagedoff-line before being stored to

disk. Thevoltagescaleof the digital oscilloscopewasadjustedin order to maximizethe dynamic

rangeof the oscilloscope. Each rf time traceacquiredthroughout this study consistedof 1024

points sampledin the interleavetriodeat 250 MegaSamples/s(0.004 _s samplingperiod). (The

stability of therf time traceat all sites insured therewould be no averagingproblemswith the

oscilloscopeoperatingin theinterleavemode.)Thedigital oscilloscopewasexternallytriggeredby

a synchronizationpulse provided by the Panametrics5800. The data acquisition delay time

(relativeto thetriggersignal)wassetmanuallysuchthatthereceivedtracewas localizedwithin the

acquisitionwindow.

Following themeasurementof thedynamicrangeof the experimentalsystemwith the thin

compositeinserted,the transmittedbeamthrough the thin compositewas scannedin a pseudo-

array manner, as described above. In addition to maximizing the dynamic range of the

oscilloscopeat the pseudo-arrayorigin site, the programmableattenuatorswere adjusted to

maximizethedynamicrangeof thereceive-sideelectronics.At eachsiteof thepseudo-array,64 rf

time traceswereacquiredandaveragedoff-line beforebeingstoredto disk.

To investigatehowthespatialvariationof theweavepatternfor the thin woven composite

affectsthephasefronts of the ultrasonicsignal,we conductedfour pseudo-arrayscanswith each

transducer. Figure 2 illustratesthe relativepositioning of the four different scan regions with

respectto the thin composite. The centerof eachpseudo-arrayscanwas linearly separatedby 3

mm from thepreviouspseudo-arrayscan. Thesefour regionsprovide a fair representationof the

different typesof regionsthatwould beencounteredin subsequentstudiesof this thin composite.
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Figure 2: Relative positioning of different scanned regions of the thin woven composite.

B. Data Analysis

B.1 Software

Data analyses and visualization were performed on a Power Macintosh using in-house

custom software written in the C programming language, in conjunction with a commercial

graphing package (DeltaGraph® Pro 3.5, DeltaPoint, Inc., Monterey, CA) and an imaging

software package (Transform 3.3, Fortner Research LLC, Sterling, VA).
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B.2 Dynamic Range Measurement Analysis

For the dynamic range measurements, each averaged rf time trace was Fast Fourier

Transformed. The magnitude of the Fast Fourier Transform was then squared to provide the

power spectrum. In addition, for each transducer, the differences in power spectra were calculated

by subtracting the power spectrum resulting from the insertion of 10 dB of attenuation from each

power spectrum. The dynamic range power spectra and relative power spectra for each

transmitting transducer were then plotted.

B.3 Pseudo-Array Measurement Analysis

For the pseudo-array scans, the time-averaged rf trace acquired at each pseudo-array site

was Fast Fourier Transformed and the magnitude of the Fast Fourier Transform was calculated.

To provide a more robust approach for material evaluation, we performed a narrowband averaging

analysis on the data. Discrete frequency data within a 1 MHz bandwidth was extracted from the

broadband pressure magnitude spectra, and subsequently averaged to provide a narrowband

magnitude representation of the measured pressure field. The 1 MHz bandwidth typically

corresponded to 5 or 6 data points, dependent upon where the 1 MHz bandwidth fell on the

discretely sampled pressure magnitude spectrum. Averaging over frequencies offered the

advantage of reducing susceptibility to unrepresentative single frequency events (outliers).

For each of the three transmitting transducers, we acquired five sets of data (one water path

and four composite paths). For each data set, narrowband analysis was performed over three

distinct frequency ranges (see Table 1). For the 5 MHz transmitting transducer, we calculated

narrowband magnitudes of the pressure field for 2.5 MHz to 3.5 MHz, 4.5 MHz to 5.5 MHz, and

6.5 MHz to 7.5 MHz. For the 10 MHz transmitting transducer, we calculated narrowband

magnitudes of the pressure field for 7.5 MHz to 8.5 MHz, 9.5 MHz to 10.5 MHz, and 11.5 MHz

to 12.5 MHz. Finally, for the 15 MHz transmitting transducer, we calculated the narrowband
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magnitudesof the pressurefield for 10.5MHz to 11.5MHz, 12.5 MHz to 13.5MHz, and 14.5

MHz to 15.5MHz.

B.3a Magnitude Image Construction

Image construction of the experimentally measured narrowband magnitude of the ultrasonic

pressure field was performed using Transform 3.3. For all images, only the central region (central

32 sites by 32 sites, i.e., 15.5 mm by 15.5 mm) of the pseudo array appears. Cropping the

images permitted zooming the region where effects due to changes in physical parameters (i.e.,

water path versus composite path, insonifying frequency, and composite position) were most

significant. All magnitude of the pressure field images are presented using grayscale mappings.

Darker regions correspond to larger relative pressure magnitudes and lighter regions correspond to

smaller relative pressure magnitudes. For purposes of presentation, the images were interpolated

to present smooth transitions across the receiving pseudo-array aperture. A bilinear interpolation

method (row then column) calculates the grayscale for each pixel of the image.
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Table 1:

Transducer

5 MHz

10 MHz

15 MHz

Narrowband Ranges

2.5 MHz to 3.5 MHz

4.5 MHz to 5.5 MHz

6.5 MHz to 7.5 MHz

7.5 MHz to 8.5 MHz

9.5 MHz to 10.5 MHz

11.5 MHz to 12.5 MHz

10.5 MHz to 11.5 MHz

12.5 MHz to 13.5 MHz

14.5 MHz to 15.5 MHz

Narrowband ranges for the transducers.
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Figure 3 showsarepresentativepressuremagnitudefield overlaidwith a cartoonof the composite

weavepattern. It alsoprovidesrelevantdimensionsfor the images.

tt%
tr_

2 mm

Warp

V

15.5 mm

Figure 3: Representative pressure magnitude image with a cartoon of the thin woven composite
overlaid.

For each series of scans (1 water path and 4 composite paths) for a particular transmitting

transducer, a set of images was constructed (3 sets total) consisting of 3 sections. All the images

of this report employ grayscale mapping. However, within each section, images are displayed

using a data floor and data ceiling specific to that section to calculate the bin size. Therefore, the

same data ranges axe mapped to the same gray value for the images within each section (i.e., bin

sizes are the same). The use of this grayscale mapping technique permits direct comparison of

images within each image section. We do not provide direct comparison for images from different

transducers because system effects have not been completely deconvolved for the use of different
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transducers.However,wecanstill makesomegeneralobservationsbetweenthesesetsas will be

discussedlater.

The first sectionof animagesetcomparespressuremagnitudemeasurementsfor waterpath

only to pressuremagnitudemeasurementswith thethin compositeinserted. The secondsection

comparesmagnitudemeasurementsfrom different scannedregionsof the thin woven composite

for a particularnarrowbandfrequency. The third and final sectionof an image set for a given

transducercomparesthe pressuremagnitudesfor a given thin compositeposition at different

insonifyingfrequencies.Table2providestheorganizationto thesetsof the imagesconstructed.

C. Results

In this Section we discuss the dynamic range measurement results and the receiver plane

images of the experimentally measured narrowband magnitude of the pressure field through water

path only and through the thin woven composite. Please see either the hardcopy images included

with this report or the accompanying CD-ROM for viewing of images discussed in this Section.

Figures 4, 6, and 8 show representative power spectra for the 5 MHz, 10 MHz, and 15

MHz transmitting transducers, respectively, for different electronic attenuation settings with the

thin composite inserted in the signal path. Figures 5, 7, and 9 show representative difference

power spectra (with respect to the power spectrum obtained for 10 dB of attenuation) for the 5

MHz, 10 MHz, and 15 MHz transmitting transducers, respectively. The vertical dashed lines in

each figure demarcate the 10 dB-down region for the power spectrum. These figures provide

confidence that all experimental data acquired for this report were within the usable bandwidth of

the acquisition system, in addition to being well above the noise floor and below the saturation

ceiling.

Table 2 offers an index to the figures of the images constructed. As described above, each

of the 3 sets are organized into 3 sections (see Chart 1). Each set is composed of 10 figures. The

first section of each set consists of three pairs of images: the narrowband magnitudes for water
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pathandcompositepathat threenarrowbandranges. The secondsectionhasthreesubsectionsof

four images: the narrowbandmagnitudesof the four different composite positions at three

narrowband ranges. The third sectionof eachset has four subsectionsof three images: the

narrowbandmagnitudesfor thethreenarrowbandrangesat thefour compositepositions.

Table 2:

Figures

10 to 12

13 to 15

16 to 19

20 to 22

23 to 25

26 to 29

30 to 32

33 to 35

36 to 39

Pressure magnitude image figures.

Transducer

5 MHz

10MHz

15 MHz

Description

Compare water path to composite path

Compare different composite positions

Com|)are

Compare

Compare

Compare

Compare

Compare

Compare

different frequencies

water path to composite path

different composite positions

different frequencies

water path to composite path

different composite positions

different frequencies
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Chart 1: Organizational chart of an image set. Each image set is divided into 3 sections. The f's

represent the narrowband frequency ranges and the x's represent the composite positions.

D. Discussion

D.1 Comparison of Water Path versus Thin Composite Path

Inspection of the images comparing the pressure magnitude for water path and composite

path provides several general observations (see Figures 10 to 12, 20 to 22, 30 to 32). First, there

is an apparent decrease in pressure magnitude for the ultrasonic signal which passes through the

thin composite. This decrease is expected due to the reflection losses at the water-composite

interfaces, in addition to the attenuation encountered from propagation through the thin composite

as compared to water path only. Second, the disruption of the circular symmetry of the ultrasonic

beam due to the insertion of the composite is evident. A contribution to the observed loss of

symmetry of the ultrasonic pressure magnitude may be due to a very slight non-normal incidence
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of theultrasonicbeamwith respectto the fill orientationof thethin composite(seeFigure 40) 3,4 .

As the ultrasonic beam interrogates different regions of the thin woven composite, the fill

orientation with respect to the ultrasonic beam will change. It is this anisotropy of the fill

orientation with respect to axis of the ultrasonic beam that can contribute to the distortion of the

ultrasonic beam, and, in turn produce a mottled and distorted pressure magnitude field 5. In

addition, there will be a wavelength dependence to the interaction of the ultrasonic field with the

fill. We could imagine that another thin composite of a different weave pattern would result in a

different distortion of the ultrasonic signal. For both the water paths and the composite paths it is

apparent that as frequency increases (wavelength decreases) the cross-sectional area of the

ultrasonic beam decreases, thus decreasing the area (volume) of insonification. This is discussed

further in the following subsection.

D.2 Comparison of Insonifying Frequencies

As we increase the frequency of insonification, the diameter of our ultrasonic beam

decreases (see Figures 16 to 19, 26 to 29, and 36 to 39). This decrease in the ultrasonic beam

diameter, most notable for the higher frequencies, is of importance when the main beam diameter is

on the order of or smaller than features of the composite (i.e., the fiber bundle size). In this case,

the pressure magnitude images can be highly dependent upon the region of the composite

insonified and the wavelength of the insonifying beam. For instance, the ultrasonic beam diameter

could be contained within one fiber bundle or it may overlay the edge of a fiber bundle (see Figure

41). These two situations can produce distinctly different results.

For frequencies of 10 MHz and greater we are able to view the finer details of the thin

composite, such as the fiber bundle size. Rough measurements from the images show the fiber

bundle dimensions to be approximately 2 mm which agrees well with measurement of the fiber

bundle size of the thin composite.
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Knowledge of the insonifying volume as a function of frequency becomes increasingly

important if one wishes to extend these observations to the use of true two-dimensional

transmitting and receiving arrays. With available digital technologies, dynamic focusing of a two-

dimensional array will permit customized focusing of the ultrasonic field.

D.3 Comparison of Thin Composite Positions

At lower frequencies (longer wavelengths), the main beam diameter is large enough that on

average approximately the same type of region is insonified (see Figures 13 to 15). This reduces

the amount of pressure magnitude variation that we observe between the different composite

regions for a given frequency. In contrast, as mentioned above, the pressure magnitude images for

the different scanned regions are more sensitive at higher frequencies (see Figures 23 to 25 and 33

to 35).
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IV. Dependence of Complex Pressure on Frequency for Ultrasonic Measurements

of a Woven Cloth (June 1997 to December 1997)

In this section we consider issues relevant to the application of single-element, one-

dimensional, and two-dimensional array technologies towards probing the mechanical properties of

advanced engineering composites and structures. We provide comparisons between phase-

sensitive and phase-insensitive detection methods for determination of textile composite structure

parameters. We also compare phase-sensitive and phase-insensitive apparent signal loss

measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-

aperture single-element receiver. Furthermore, we extend our work on ultrasonic beam profile

issues through investigation of the phase fronts of the pressure field.

In Section IV.A we briefly describe the experimental arrangement and methods for data

acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven

composite. Section IV.B details the analysis of the experimental data followed by the experimental

results in Section IV.C. Finally, a discussion of the observations and conclusions is found in

Section IV.D.

A. Experimental Arrangement and Methods

All measurements in this study were performed in a water tank using a set of 0.5"-

diameter, spherically-focused (4" focal length), piezoelectric transducers with nominal center

frequencies of 5 MHz, 10 MHz, and 15 MHz (Panametrics V309, V311, and V319, respectively)

as the transmitting transducer. The thin woven composite was positioned in the focal plane of the

transmitting transducer and oriented normal to the beam axis of the transducer. A 1 mm diameter

PVDF, broadband, needle hydrophone (Force Institute, Type MH28-10) was used as the receiving

transducer. The receiving hydrophone was positioned 120 mm from the transmitting transducer
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(approximately 20 mm from the back side of the specimen). In the receiving plane, the

hydrophonesampledtheultrasonicpressurefield in atwo-dimensionalpseudo-array.The pseudo-

arraywas composedof 64 sitesby 64 sites (4096 total sites)with 0.5 rnm separationbetween

adjacentsitesfor a total sampledareaof 31.5 mm by 31.5 mm. Figure 1 is a schematicdiagram

showing the dataacquisitionsystemusedin this investigation. For further details regardingthe

experimentalarrangement,thethin wovencomposite,and dataacquisitionprotocolpleaserefer to

SectionII of the previous ProgressReport which is includedin the CD-ROM version of this

report.

A goalof this ongoingexperimentalresearchis to understandhow systematicvariationsof

the acquisition system,as well as changesin the materials investigated,affect the quantitative

evaluationof thesematerials.Thef'trstphysicalparameterwechoseto vary systematicallywas the

nominal center frequency of the transmitting transducer.Three transmitting transducers, as

mentionedabove,wereemployedfor theacquisitionof theexperimentaldatadiscussedwithin this

report.
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Figure 1. Experimental Setup.

In addition, we investigated how the spatial variation of the weave pattern of the thin

woven composite affected the phase fronts of the ultrasonic signal. To that end we conducted

pseudo-array scans over 4 different regions of the woven composite for each of the 3 transmitting

transducers previously mentioned (5, 10, 15 MHz center frequencies). Figure 2 illustrates the

relative positioning of the four different scan regions with respect to the thin woven composite.

The center of each pseudo-array scan was linearly separated by 3 mm from the previous pseudo-
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arrayscan. Thesefour regionsprovidea fair representationof thedifferent typesof regions that

would beencounteredin subsequentstudiesof thiscomposite.

1 2 3 4

Figure 2. Relative positioning of the four different scanned regions of the thin woven composite.

B. Data Analysis

B.1 Software

Data analyses and visualization were performed on a Power Macintosh using in-house

custom software written in the C programming language in conjunction with a commercial imaging

software package (Transform 3.3, Fortner Software, Sterling, VA), a commercial spreadsheet
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package (Excel 5.0, Microsoft, Redmond, WA), and a commercial graphing package

(DeltaGraph®Pro 3.5,DeltaPoint,Inc., Monterey,CA).

B.2 Pseudo-Array Measurement Analysis

For the two-dimensional pseudo-array scans, the time-averaged rf trace acquired at each

pseudo-array site was Fast Fourier Transformed to determine the spectral content of the time-

domain rf trace. Discrete frequency data were extracted from the real and imaginary parts of

Fourier transform of the broadband rf trace to provide a single-frequency representation of the

respective parts of the pressure field. Throughout this report, we will refer to the real part of the

Fourier transform as the in-phase part of the signal, and similarly, we will refer to the imaginary

part of the Fourier transform as the quadrature part of the signal. This terminology is consistent

with the terminology used is the electrical engineering community. (Please refer to Appendix A for

a discussion of this choice of terminology.) The magnitude of the Fourier transform was

calculated by taking the square root of the sum of the squares of the real and imaginary parts of the

Fourier transform.

For each of the three transmitting transducers, we acquired five sets of data (one water path

and four composite paths). For each transmitting transducer data set, single-frequency image

analysis was performed at three distinct frequencies. For the 5 MHz transmitting transducer, we

calculated the magnitude, in-phase, and quadrature parts of the pressure field near 3 MHz, 5 MHz,

and 7 MHz. For the 10 MHz transmitting transducer, we calculated the magnitude, in-phase, and

quadrature parts of the pressure field near 8 MHz, 10 MHz, and 12 MHz. Finally, for the 15 MHz

transmitting transducer, we calculated the magnitude, in-phase, and quadrature parts of the

pressure field near 11 MHz, 13 MHz, and 15 MHz.
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B.2a Magnitude Image Construction

Image construction of the experimentally measured single-frequency magnitude of the

ultrasonic pressure field was performed using Transform 3.3. For the magnitude images, the

central region (central 32 sites by 32 sites, i.e., 15.5 mm by 15.5 mm) of the pseudo-array

appears. Cropping the images permitted zooming the region where effects due to changes in

physical parameters (i.e., water path versus composite path, insonifying frequency, and composite

position) were most significant. All magnitude of the pressure field images are presented using the

grayscale mapping shown in Figure 3. Darker regions correspond to larger relative pressure

magnitudes and lighter regions correspond to smaller relative pressure magnitudes. For purposes

of presentation, the images were interpolated to present smooth transitions across the receiving

pseudo-array aperture. A bilinear interpolation method (row then column) calculates the grayscale

for each pixel of the image. Figure 4 shows a representative pressure magnitude field overlaid

with a cartoon of the composite weave pattern. It also provides relevant dimensions for the

images.

Smaller relative

pressures
Larger relative

pressures

Figure 3. Grayscale mapping used for pressure magnitude images.
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Figure 4. Representative pressure magnitude image with a cartoon of the thin woven composite
overlaid.

B.2b In-Phase and Quadrature Image Construction

Image construction of the experimentally measured single-frequency in-phase and

quadrature parts of the ultrasonic pressure field was also performed using Transform 3.3. All

images of the in-phase and quadrature parts of the pressure field are presented using the color

mapping shown in Figure 5. Red regions correspond to positive Values, blue regions correspond

to negative values, and white corresponds to neutral values. The particular mapping was chosen

so as to emphasize the mixing of positive and negative values of in-phase or quadrature signals

over a spatial region. Similar to the pressure magnitude images, the central region of the pseudo-

array appears and a bilinear interpolation method (row then column) calculates the color for each
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pixel of theimage. Figure6 showsrepresentativein-phaseandquadratureimagesfor a reference

pathsignal.

Negative values Positive values

Neutral values (zero)

Figure 5. Colorscale mapping used for in-phase and quadrature images.

(a) (b)

Figure 6. Representative (a) in-phase and (b) quadrature images of an ultrasonic pressure field
transmitted through water only. Data ranges and color scales are the same for both images.
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The organizationof the in-phase and quadrature images (Figures 7 to 156) in the Results

section is similar to the organization of the magnitude images of the previous report. For each

series of scans (1 reference path and 4 composite paths) for a particular transmitting transducer, a

set of images was constructed (1 set for each transducer for a total of 3 sets) consisting of 4

sections each. For each figure, images are displayed using a common data floor and data ceiling to

calculate the colorscale bin size. Therefore, the same data values are mapped to the same color

value for the images within each figure (i.e., bin sizes are the same). The use of this colorscale

mapping technique permits direct comparison of images within each figure. Direct comparison for

images from different transducers has not been performed at this stage of the analysis since system

effects have not been completely deconvolved for the use of different transducers. However, we

are still able to make some general observations between these sets as will be discussed below.

The first section of an image set compares in-phase pressure signals for the reference path

to in-phase pressure signals with the thin woven composite inserted. Similar comparisons are also

made for the quadrature signals. For each transducer, 4 regions of the composite were scanned

and subsequently analyzed at 3 single frequencies. The second section compares in-phase and

quadrature signals with the thin woven composite inserted for the 4 scanned regions at 3 single

frequencies. The third section of an image set for a given transducer compares the in-phase

(quadrature) pressure signals for a given thin woven composite region at 3 different insonifying

frequencies. The fourth and final section compares the in-phase (quadrature) pressure signals at a

given frequency for the 4 different scanned regions.

B.2c Apparent Signal Loss Analysis

Extending our qualitative analysis of the in-phase and quadrature images of this report and

the magnitude images of the previous Progress Report, we calculate the apparent signal loss of the

ultrasonic pressure field due to transmission through the thin woven composite. Initial analysis is
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performedon the 5 MHz transducerdata. Theapparentsignallosscalculationshavenot takeninto

accountdiffraction or insertionlosscorrections. Thesecompensations,as well asanalysisof the

10MHz and 15MHz transducersdata,areleft for futurework.

We calculatetheapparentsignallossby two approaches.3-6Thefirst methodsimulatesthe

two-dimensionalpseudo-arrayasa 0.5"-diameterphase-sensitive planar receiver. In this case,

the receiver is sensitive to the phase of the pressure field. The second method uses the pseudo-

array to simulate a 0.5"-diameter phase-insensitive planar receiver. In contrast to a phase-

sensitive receiver, a phase-insensitive receiver is not sensitive to the phase of the pressure field but

instead is sensitive to the magnitude or energy of the pressure field. For the present case, we will

always be considering a phase-insensitive receiver that is sensitive to the energy (power) of the

pressure field (i.e., an acoustoelectric-like receiverT-9). Figure 157 shows the footprint the 0.5"-

diameter receiver with respect to the size of the in-phase and quadrature images.

In-house software in conjunction with Transform 3.3, Excel 5.0, and DeltaGraph Pro 3.5

was used to calculate the apparent signal loss. In general, the signal loss is calculated by the

conventional log spectral subtraction technique for a reference power signal and a sample power

signal. The phase-sensitive power was calculated as follows. Only those signals that the

simulated receiver would measure were considered (i.e., those array sites under the footprint of the

simulated receiver). As in the case of a single-element receiver, signals not received due to

diffraction or refraction of the ultrasonic beam are not considered for analysis. The in-phase

signals from all received array sites were then summed phase-sensitively. Similarly, the

quadrature signals from each array site were summed phase-sensitively. The phase-sensitive power

of the received ultrasonic field was subsequently calculated by taking the sum of the squares of the

phase-sensitive in-phase and phase-sensitive quadrature signals. We do this for both the reference

signals and the signals for the path with the thin woven composite inserted to arrive at an apparent

phase-sensitive signal loss.

The apparent phase-insensitive signal loss of the ultrasonic pressure field due to

transmission through the thin woven composite was calculated in a similar manner. The primary
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differencebetweenthe two methodsis how the in-phaseand quadraturesignals receivedare

calculated. Sincethe phase-insensitivereceiveris sensitiveto theenergy (power) of a pressure

field andnot the amplitudeof a pressurefield, the phase-insensitivein-phasepower receivedis

calculatedby summingthe squareof the in-phasesignal for all receivedarraysites. The phase-

insensitivequadraturepower is calculatedin asimilar manner.The phase-insensitivepower of the

ultrasonic field is then simply the sum of the phase-insensitivein-phasepower and the phase-

insensitivequadraturepower. We do this for both thereferencesignalsandthesignalsfor thepath

with thethin wovencompositeinsertedto arriveatanapparentphase-insensitivesignalloss.

The proceduresdescribedabovecalculatethe apparentsignal loss for a given composite

regionat asingle frequency.This analysisis thenrepeatedover thefrequencyrange2 MHz to 9

MHz for eachcompositeregion investigated. The 2 MHz to 9 MHz bandwidth was chosen

according to the dynamic range measurementsof our experimentalsystem described in the

previousProgressReport.

C. Results

In this section we discuss the receiver plane images of the experimentally measured in-

phase, quadrature, and magnitude of the ultrasonic pressure field for a path through water only

and a path with the thin woven composite inserted. We also discuss figures of the reference and

composite paths power spectra and apparent signal losses for signals through the composite.

Please refer to either the hardcopy figures or the accompanying CD-ROM for viewing of the

figures. Note that only a small number of figures of the in-phase and quadrature images are

included in the hardcopy version due to the extensive number of figures. In general, figures of

pressure field images at the nominal center frequency of the 5 MHz transducer are included in

hardcopy.

Table 1 provides an index to the figures of the in-phase and quadrature images. As

described in the Data Analysis section, each of the 3 sets are organized into 4 sections. Each set is
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composedof 50 figures. The multipleviews of thedataprovide a meansof accentingdifferent

featuresof thedata. A discussionof the interpretationof thesefeaturesfollows in the next section.

The first sectionof eachset consistsof the in-phase (quadrature)imagesfor water path and

compositepath at 3 single frequenciesat eachof the 4 scannedregions of the composite (24

figures). The secondsectionshowsthe in-phaseandquadraturesignals transmittedthrough the

thin wovencompositefor 3 singlefrequenciesateachof the4 regionsof thecomposite(12slides).

The third sectionof eachsetcomparesthein-phase(quadrature)imagesat 3 single frequenciesfor

the4 regionsof the composite(6 slides). The last sectioncomparesthe in-phase(quadrature)

imagesfor the4 regionsat 3 singlefrequencies(8 slides). Figuresincludedin hardcopyform are

for images resulting from analysis performed near the nominal center frequency of each

transmittingtransducer(i.e., 4.9 MHz, 10.0MHz, and 14.9MHz). Thesefigures arechosenasa

representativesampleof the largersetof figures availablein PDF version on the included CD-.

ROM.

The phase-sensitiveandphase-insensitivesignallossanalysesareshownin Figures 158to

175. As mentionedin the DataAnalysis section,power spectrafor the referencepath and

compositepathsandapparentsignallossesdueto thethin wovencompositeareshownonly for the

5 MHz transmittingtransducerdataover thebandwidth2 MHz to 9 MHz. Referencepath and

composite path power spectraare comparedfor both phase-sensitiveand phase-insensitive

detection. Furthermore, for the caseof the compositeregion 1, phase-sensitiveand phase-

insensitivepower spectraarecomparedin Figures 160 and 161. Summary figures of both the

phase-sensitiveandphase-insensitiveapparentsignallossesfor eachcompositepositionareshown

in Figures 172and 173.
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Figures

7 to 30

31 to 42

43 to 50

51 to56

57 to 80

•81 to 92

93 to 100

101to 106

107to 130

131to 142

143to 150

151to 156

Transducer

5 MHz

10 MHz

15 MHz

Table 1.

Compare

Compare

Compare

Compare

Compare

Brief Description

water path to composite path

I and Q for composite path

different frequencies

different composite positions

water path to composite path

Compare I and Q for composite path

Compare different frequencies

Compare different composite positions

Compare water path to composite path

Compare I and Q for composite path

Compare different frequencies

Compare different composite positions

In-phase and quadrature of the pressure field figures.

D. Discussion

This section provides commentary on the Results presented in the previous section. The

discussion is separated into three subsections. The first subsection offers qualitative

interpretations of the in-phase and quadrature images of the pressure fields for the reference path

and composite paths. The second subsection discusses the phase-sensitive and phase-insensitive

apparent signal loss analyses. The final subsection addresses transducer alignment and ultrasonic

beam profile issues.
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D.1 Qualitative Interpretation

D.la Comparison of Water Path versus Thin Woven Composite Path

Figures 7 to 30, 57 to 80, and 107 to 130 compare the images for reference path and

composite paths of in-phase and quadrature parts of the pressure field. Inspection of these figures

leads to several general observations. In some of the images for lower frequencies we are able to

observe gross features common to both reference path and composite path for different frequencies

and different regions of the composite. That is, the same areas of the receiving array appear to

detect similar pressures (i.e., similar shapes in the images appear). However, the images appear

"mottled" or distorted for the cases of transmission through the inserted thin woven composite.

This distortion of the in-phase and quadrature signals, hence the phase, would be expected for

transmission through an inhomogeneous and anisotropic material such as our textile composite.

Some of this distortion may be attributed to the cross-over regions for which the fill of the woven

composite is oriented non-normal to the angle of incidence of our insonifying ultrasonic beam.

(See Figure 176.) This angle is referred to as the "crimp angle" and can be used to characterize

textile composites, l0 The orientation of the fill within the cross-over regions with respect to the

direction of propagation of the insonifying beam may provide a channel for propagation of the

energy of the ultrasonic pressure field. 11,12

We also note that despite the great effort made in alignment of the experimental apparatus,

the expected circular symmetry of the in-phase and quadrature parts of the pressure field

transmitted through the reference path was not observed. This is most notable at higher

frequencies, where we observe a marked increase in mixing of positive (reds) and negative (blues)

pressures in the in-phase and quadrature images due in part to transducer misalignment. For

pressure fields propagated through only water, we would have expected images of the magnitude,

in-phase, and quadrature part of the pressure field similar to Figure 177. These images provide

theoretical expectations of a pressure field generated by a 0.5"-diameter, 4" focal length,

spherically-focused transducer and propagated 120 mm through water. In our previous Progress
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Report we did note thatmagnitudesof thepressurefields exhibitedtheexpectedring symmetry.

We now note, however, that the symmetryis absentin the in-phaseand quadratureparts of the

pressurefield. This undesirablefeatureof the experimentalsignals has ramifications that we

discussfurther in the following subsectionsregardingphasecancellationat the face of a finite-

aperturereceiverandalignmentof multi-dimensionalreceiverarrays.

D.lb Comparison of In-Phase and Quadrature of Thin Woven Composite Path

Comparisons of the in-phase and quadrature images of the pressure field propagated

through the thin woven composite (Figures 31 to 42, 81 to 92, and 131 to 142) do not appear to

provide a simple interpretation with respect to the sample scanned. The images do provide the

reader with an idea of the amount of energy of the ultrasonic pressure field found in the in-phase

and quadrature parts of the pressure field. However, it should be noted that there are still subtleties

even for the apparently simple interpretation of where the energy resides in a pressure field.

Appendix B offers a discussion of possible difficulties involved in interpreting in-phase and

quadrature images, and in specific, how time shifts in the record of the digitized received pressure

data can affect these images.

D.lc Comparison of Insonifying Frequencies for a Thin Woven Composite Path

The reader may immediately observe in Figures 43 to 50, 93 to 100, 143 to 150 that the

footprint of the ultrasonic beam decreases as the frequency of insonification is increased. We also

observe an increased variability in the features of the in-phase and quadrature images for lower

frequencies of insonification (2 MHz to 8 MHz) as compared to higher frequencies of

insonification (> 10 MHz) for a given thin woven composite region. For the higher frequencies

(> 10 MHz), the diameter of the ultrasonic beam is smaller than the large scale features of the thin

woven composite (i.e., warp and fall size). Hence, the higher frequencies would be insonifying
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the sametype of regionsof thecomposite. However, the lower frequencies(2 MHz to 8 MHz)

havefootprintsthat will interrogateseveralwarp and fill bundles. It is this variation in region of

interrogation by the ultrasonic beam for different frequencies that leads to variation in features of

the in-phase and quadrature images.

D.ld Comparison of Thin Woven Composite Paths for a given frequency

Figures 51 to 56, 101 to 106, and 151 to 156 compare the in-phase (quadrature) images of

the received pressure field for the 4 different scanned regions of the thin woven composite for a

given frequency of insonification. In general, the same conclusions of the previous Progress

Report regarding the magnitude of the pressure field can be made here for the in-phase and

quadrature parts of the pressure field. For lower frequencies, the ultrasonic beam footprint is large

enough so that on average approximately the same type of region is insonified. We observe this

feature in Figures 51 to 56. There is less variation in these figures than Figures 101 to 106 and

151 to 156 of the higher frequencies of insonification. Due to the smaller footprint of the higher

frequencies as describe above, the in-phase and quadrature signals will be highly dependent upon

the features of the region scanned as evidenced in the marked variation of the in-phase and

quadrature images for the higher frequencies.

D.2 Quantitative Interpretation

D.2a Phase-Sensitive and Phase.Insensitive Apparent Signal Loss

Figures 158 to 175 show the phase-sensitive and phase-insensitive power spectra and

apparent signal loss for the 5 MHz transducer data over the bandwidth 2 MHz to 9 MHz for each

scanned region of the composite. The power spectra for transmission through the reference path

and through water with the thin woven composite inserted are compared for each region of the

composite (Figures 158 and 159, 163 and 164, 166 and 167, 169 and 170). In all cases but the
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phase-sensitivepower spectra for position 1 of the composite(Figure 158) we observe the

expectedresult of greaterpower in thewaterpathsignal comparedto the compositepath signal.

This discrepancybetweenmeasuredandexpectedresultsisdiscussedfurtherbelow.

In addition,thephase-sensitiveandphase-insensitivepowerspectrafor both referencepath

and compositepath (Figures 160 and 161) are comparedfor the first scannedregion of the

composite(position 1). Thesefiguresarerepresentativeof theotherregionsof the composite. As

expected,thepowerreceivedat eachfrequencyby thephase-insensitivereceiveris greaterthanor

equal to the power receivedat eachfrequencyby the phase-sensitivereceiver. The discrepancy

betweenthe two detectionmethodsis most pronouncedfor higher frequencies. The apparent

decreasein power (energy)of theultrasonic field when detectedphase-sensitivelyis a result of

phasecancellationatthefaceof afinite-aperturepiezoelectricreceiver.

The phase-sensitiveand phase-insensitiveapparentsignal lossesarecomparedfor each

regionof the composite(Figures 162, 165, 168,and 171)as well as for eachdetectionmethod

(Figures 172 and 173). For the lower half of thebandwidth,the phase-sensitiveapparentsignal

lossesexhibit similar frequencybehaviorasthe phase-insensitiveapparentsignal losses for each

compositeposition. However, for theupperhalf of the bandwidth,only in thecaseof position4

(Figure 171) doesthephase-sensitiveapparentsignal lossexhibit similar frequencybehavior the

phase-insensitiveapparentsignalloss. For the other3 compositepositions, the higher frequency

behaviorof the apparentsignallossmeasuredphase-sensitivelyseemsonly to provide similarity in

gross featuresof the phase-insensitivemeasurements(i.e., local minimum around 8 MHz).

Furthermore,thereis greatervariationin thephase-sensitiveapparentsignal lossesascomparedto

phase-insensitiveapparentsignal losses. This is demonstratedin Figure 174 comparing the

averagephase-sensitiveapparentsignal loss of the 4 compositepositions to the averagephase-

insensitiveapparentsignal loss. The large standarddeviationerror bars of the averagephase-

sensitiveapparentsignallossfor higherfrequenciesillustratethis variation. Thestrengthof phase-

insensitivedetectionversusphase-sensitivedetectionis theabsenceof phasecancellationat theface

of a finite-aperturereceiver. In all phase-sensitivereceivers,thisphenomenonoccurs. Hence,we
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would always expect to measurelargersignal lossesphase-sensitivelythan phase-insensitively.

We note,however,that for compositepositions1and3 (Figures162and 168) thephase-sensitive

apparentsignal loss is less than thephase-insensitiveapparentsignal loss for a portion of the

bandwidth. This canbe explainedby the differencein the referencepower spectrafor the two

cases. In the caseof phase-sensitivedetection,phasecancellationat the face of the receiveris

occurringevenfor thereferencepath. For compositeposition 1, the phasecancellationat the face

of thereceiveris extensiveto thedegreewehavenegativeapparentsignallossasthe ultrasoundis

transmittedthroughthe composite. This apparentcontradictionbetweenthe phase-sensitiveand

phase-insensitivesignal lossesfor the two casementionedaboveis resolvedwhen a common

referencepower spectrumis usedin the calculationof the signal loss. Figure 175 depictsthe

phase-sensitiveand phase-insensitiveapparentsignal losseswith the phase-insensitivereference

power spectrumusedin both calculations. Now, asexpected,the phase-sensitivesignal loss is

greaterthanthephase-insensitivesignallossat all frequencies.

A final commentcanbe offeredregardingthesignal lossbehaviorof thecomposite. It is

desirableto have some parameterto characterizethe state of the material. In the past, our

Laboratoryhas found the slopeof attenuationto be a robust ultrasonicparameterthat correlates

well with physicalpropertiesof thematerial.13-16For thecaseof this textile composite,a slopeof

attenuationcharacterizationmay not be suitable. Further analysisis requiredbefore we might

formulatea parameterizationmethod.

D.3 Further Issues

There are some issues that stem from the discussions of the previous subsections. We

have observed the lack of symmetry of the in-phase and quadrature images that would be expected

for transmission through water. This leads to questions of proper alignment for our two-

dimensional pseudo-array. As mentioned in the previous Progress Report, alignment of the

experimental apparatus was achieved through optimization of the reference power spectrum for the
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caseof the receiving hydrophonepositionedin the centerof the two-dimensionalpseudo-array.

We would like to believethe hydrophoneis on-axis of the transmittingtransducer,but there is

alwaystheconcernof whetheror not thetransmittingtransducershootsdown thegeometricaxis.

In retrospect,ouralignmentprocedureis appropriatefor a single-elementreceiverbut is inadequate

for thecaseof atwo-dimensionalpseudo-arrayor thecaseof a true oneor two-dimensionalarray.

This is evidencedin Figures178and 179. We seethatif we only inspectthemagnitude(power)

of thepressurefield wewill not observethepossibilityof phasecancellationat the faceof a finite-

aperturephase-sensitivereceiver. Figure 178 shows the magnitude, in-phase, and quadrature

imagesof thepressurefield at 7 MHz for thereferencepath. We observea smoothlyvarying and

symmetricmagnitudeimageand smoothly varying in-phaseand quadratureimageswith some

broken symmetry. Figure 179 shows the magnitude,in-phase,and quadratureimagesof the

pressurefield at 8 MHz for thereferencepath. Themagnitudeof thepressurefield imageappears,

smoothly varying. However,the in-phasepartof thepressurefield exhibitsarapidvariation in the

centerof the ultrasonicbeamwhich we would not expectfor analignedsystem. Futurepseudo-

arrayscanswill incorporatemonitoringof the in-phaseandquadratureimagesduringthe alignment

of thetransmittingtransducerandreceivinghydrophone.

Knowledgeof the volumeof insonificationis a secondissueof concernfor evaluationof

composites. We havepreviously describedthe decreasein footprint of theultrasonicbeamwith

the increaseof insonifying frequency.We further observedhow lower frequenciesmight provide

a measureof averagequality of a compositeregion whereashigher frequenciesmight provide a

measureof smallerscalefeaturesof thecomposite.As mentionedin thepreviousProgressReport,

it is a full understandingof thebeamprofile (focal length, focal depth,beamdiameter)aswell as

knowledge of the material propertiesof the compositethat will permit accurateevaluationof

compositeviability. Furthermore,with the advancesin digital technologiescustomizationof

ultrasonic fields is possible through dynamic focusing of one and two-dimensional arrays.

Considerationof each of theseaspectsof an experimentalmeasurementsystem can lead to

advancesin quantitativenondestructiveevaluationof complexcompositematerials.
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Appendix 1. The Use of In-Phase and Quadrature

In the Data Analysis section, we discuss the choice of referring to the real part of the

Fourier transform of the time-domain pressure data as the in-phase part of the pressure field. We

also refer to the imaginary part of the Fourier transform of the time-domain pressure data as the

quadrature part of the pressure field. This Appendix describes the background for these choices.

We use broadband excitation pulses (short time duration) to initiate the generation of the

ultrasonic signal. We can expand our time-domain rf signal (pressure field) received by the

pseudo-array as superposition of cosine and sine terms for every frequency:

p(t) = a° + _ a_ cos(cont) + _ bn sin(cont ). (A.1)
2 n=l n=l

The cosine and sine functions form a set of basis functions that are orthonormal and linearly

independent. Because sin(co_t +-_)= cos(co,t) at any specific frequency co,, the cosine term and

sine term are _2 or 90 ° out of phase and are said to be in quadrature with each other. 17

Appendix 2. The Effect of Time Shifts on the In-Phase and Quadrature Signals

In the Discussion section we mentioned the possibility of ambiguities in interpreting the in-

phase and quadrature images of the pressure field. A simple exercise that illustrates this is

adjustment of a digital delay in the acquisition of the time-domain pressure data. Off-line in

software, we are able to apply time shifts to the received time-domain pressure data. The question

then is how does the time shift affect the in-phase and quadrature images of the pressure field.

The Fourier Shift Theorem (B. 1) addresses this question. 18

p*h_"d(CO) = p(CO) e ;'_a' (B. 1)

If we shift our time-domain pressure signal by an interval At, we see the real and imaginary parts

of the Fourier transform of the pressure field axe modified by the exponential term. We do note,

though, that the magnitude (power) of the shifted pressure field is not affected. The following

animation (Movie 1), which only appears in the PDF version on the CD-ROM, illustrates this
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effect. Figure 180 shows in-phaseand quadratureimages for the original pressurefield without

any time shift and thepressurefield shiftedby 40 nsec. Eachframeof in-phaseand quadrature

animationhasbeencalculatedfrom atime-domainpressurefield thathasbeenshifted forward in

time by 40 nsec from the previousin-phaseand quadratureimages. By inspectionof either the

Figure 180 or Movie 1, it is apparentthat the amountof power (energy) in the in-phase and

quadraturepartsof thepressurearesignificantlyaffectedby time shiftsin thereceivedtime-domain

data. Even though the totalpower in thepressurefield remainsunchanged,thereis a shifting of

energybetweenthe in-phaseand quadraturepartsof the pressurefield with time shifting of the

receivedpressurefield.
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(a) (b)

Figure 9. Water path and composite path in-phase images at 4.9 MHz. Receiver plane images
for (a) in-phase part of the pressure field for water path only and (b) in-phase part of the pressure
field for composite path at Position 1 using the 5 MHz transducer.
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Figure 10. Water path and composite path quadrature images at 4.9 MHz. Receiver plane images
for (a) quadrature part of the pressure field for water path only and (b) quadrature part of the
pressure field for composite path at Position 1 using the 5 MHz transducer.
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(a) (b)

Figure 15. Water path and composite path in-phase images at 4.9 MHz. Receiver plane images
for (a) in-phase part of the pressure field for water path only and (b) in-phase part of the pressure
field for composite path at Position 2 using the 5 MHz transducer.
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Figure 16. Water path and composite path quadrature images at 4.9 MHz. Receiver plane images
for (a) quadrature part of the pressure field for water path only and (b) quadrature part of the
pressure field for composite path at Position 2 using the 5 MHz transducer.
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(a) (b)

Figure 21. Water path and composite path in-phase images at 4.9 MHz. Receiver plane images
for (a) in-phase part of the pressure field for water path only and (b) in-phase part of the pressure
field for composite path at Position 3 using the 5 MHz transducer.
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Figure 22. Water path and composite path quadrature images at 4.9 MHz. Receiver plane images
for (a) quadrature part of the pressure field for water path only and Co) quadrature part of the
pressure field for composite path at Position 3 using the 5 MHz transducer.
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Figure 27. Water path and composite path in-phase images at 4.9 MHz. Receiver plane images
for (a) in-phase part of the pressure field for water path only and (b) in-phase part of the pressure
field for composite path at Position 4 using the 5 MHz transducer.
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(a) (b)

Figure 28. Water path and composite path quadrature images at 4.9 MHz. Receiver plane images
for (a) quadrature part of the pressure field for water path only and (b) quadrature part of the
pressure field for composite path at Position 4 using the 5 MHz transducer.

92



iilii_i
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Figure 32. In-phase and quadrature parts of the pressure field at 4.9 MHz. Receiver plane
images for composite path at Position 1 using the 5 MHz transducer for the (a) in-phase part of the
pressure field and (b) quadrature part of the pressure field.

(a) (b)

Figure 35. In-phase and quadrature parts of the pressure field at 4.9 MHz. Receiver plane
images for composite path at Position 2 using the 5 MHz transducer for the (a) in-phase part of the
pressure field and (b) quadrature part of the pressure field.
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Figure 38. In-phase and quadrature parts of the pressure field at 4.9 MHz. Receiver plane
images for composite path at Position 3 using the 5 MHz transducer for the (a) in-phase part of the
pressure field and (b) quadrature part of the pressure field.

i_ i_

!i!::. ""_i_ii?iiii: : :. : :

ii_:: iiiiii_!_iii!!!i!i!!!:
::::: :
! i :

:
II I

i

:::.?!_i:i:':'::" - - _: :

:'!ii:

I I

(a) (b)

Figure 41. In-phase and quadrature parts of the pressure field at 4.9 MHz. Receiver plane
images for composite path at Position 4 using the 5 MHz transducer for the (a) in-phase part of the
pressure field and (b) quadrature part of the pressure field.
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(a) (b) (c)

Figure 43. Receiver plane images of the in-phase part of the pressure field at Position 1 of the
thin composite using the 5 MHz transducer. Images are shown for the frequencies: (a) 2.9 MHz,
(b) 4.9 MHz, and (c) 7.1 MHz.

(a) (b) (c)

Figure 44. Receiver plane images of the quadrature part of the pressure field at Position 1 of the
thin composite using the 5 MHz transducer. Images are shown for the frequencies: (a) 2.9 MHz,
(b) 4.9 MHz, and (c) 7.1 MHz.
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(a) (b) (c)

Figure 45. Receiver plane images of the in-phase part of the pressure field at Position 2 of the
thin composite using the 5 MHz transducer. Images are shown for the frequencies: (a) 2.9 MHz,
(b) 4.9 MHz, and (c) 7.1 MHz.

(b) (c)

Figure 46. Receiver plane images of the quadrature part of the pressure field at Position 2 of the
thin composite using the 5 MHz transducer. Images are shown for the frequencies: (a) 2.9 MHz,
(b) 4.9 MHz, and (c) 7.1 MHz.
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Figure 47. Receiver plane images of the in-phase part of the pressure field at Position 3 of the
thin composite using the 5 MHz transducer. Images are shown for the frequencies: (a) 2.9 MHz,
(b) 4.9 MHz, and (c) 7.1 MHz.
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Figure 48. Receiver plane images of the quadrature part of the pressure field at Position 3 of the
thin composite using the 5 MHz transducer. Images are shown for the frequencies: (a) 2.9 MHz,
(b) 4.9 MHz, and (c) 7.1 MHz.
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Figure 49. Receiver plane images of the in-phase part of the pressure field at Position 4 of the
thin composite using the 5 MHz transducer. Images are shown for the frequencies: (a) 2.9 MHz,
(19) 4.9 MHz, and (c) 7.1 MHz.

(a) (b) (c)

Figure 50. Receiver plane images of the quadrature part of the pressure field at Position 3 of the
thin composite using the 5 MHz transducer. Images are shown for the frequencies: (a) 2.9 MHz,
(b) 4.9 MHz, and (c) 7.1 MHz.
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Figure 53. Receiver plane images of the in-phase part of the pressure field at 4.9 MHz are
shown for the different scanned regions of the thin composite using the 5 MHz transducer.
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Figure 54. Receiver plane images of the quadrature part of the pressure field at 4.9 MHz are
shown for the different scanned regions of the thin composite using the 5 MHz transducer.
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Figure 157. Footprint of simulated0.5"-diameterreceiverusedfor phase-sensitiveand phase-
insensitiveapparentsignallossmeasurements.
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Figure 158. Phase-sensitive power spectra for reference path and region 1 of the thin woven
composite using the 5 MHz transmitting transducer. These power spectra were determined by
simulating a phase-sensitive receiver of the size shown in Figure 157.
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Figure 159. Phase-insensitive power spectra for reference path and region 1 of the thin woven
composite using the 5 MHz transmitting transducer. These power spectra were determined by
simulating a phase-insensitive receiver of the size shown in Figure 157.
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Figure 160. Phase-sensitive and phase-insensitive power spectra for the reference path using the
5 MHz transmitting transducer.
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5 MHz transmitting transducer
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Figure 162. Phase-sensitive and phase-insensitive apparent signal losses for the region 1 of the
thin woven composite using the 5 MHz transmitting transducer.
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Figure 163.

composite using the 5 MHz transmitting transducer. These power spectra were determined by
simulating a phase-sensitive receiver of the size shown in Figure 157.

Phase-sensitive power spectra for reference path and region 2 of the thin woven
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Figure 164.

composite using the 5 MHz transmitting transducer. These power spectra were determined by
simulating a phase-sensitive receiver of the size shown in Figure 157.

Phase-insensitive power spectra for reference path and region 2 of the thin woven
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Figure 177. Images of (a) magnitude, (b) in-phase, and (c) quadrature parts of a simulated
pressure field at 5 MHz transmitted along the reference path. These simulations illustrate the
expected ring symmetry to be found in all images.

_!_!iii!!ii_i:__,.,_i_i_iiiiii_iiiiiiiiiiiiiiii_iiiiii_iiii_!_ii!_i_i_i_ii_
_iiiiiiiiiiiiiiiiii!!i!!i_i_'il;_+_i_ii_i_ii_ii:_%iiiiiiiiiiiiiiiii?iiilL

iil ii
: :::::::::::5:

(a) (b) (c)

Figure 178. Images of (a) magnitude, (b) in-phase, and (c) quadrature parts of the pressure
field at 7 MHz transmitted along the reference path. Note, in general, the expected circular
symmetry in each image.
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Figure 179. Images of (a) magnitude, (b) in-phase, and (c) quadrature parts of the pressure field
at 8 MHz transmitted through the reference path. Note the rapid variation of the in-phase signals
within the center of the in-phase image. This asymmetry does not readily appear in the magnitude
images.
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Figure 180. Comparison of in-phase and quadrature images for 5 MHz pressure field for
reference path with the original time-domain pressure data (i.e., no time shift) and the time-domain
pressure data shifted forward in time by 40 nsec.
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V. Dependence of Complex Pressure on Transducer f-number for Ultrasonic

Measurements of a Woven Cloth (December 1997 to June 1998)

In this final section, we compare apparent signal loss measurements of the thin woven

composite using phase-sensitive and phase-insensitive detection methods. This section presents

experimental results that support successful implementation of single element as well as one and

two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In

previous reports 1-3, we have addressed issues regarding beam profiles of ultrasonic pressure fields

transmitted through a water-only path and transmitted through a thin woven composite sample.

We presented experimental results of the effect of a thin woven composite on the magnitude and

phase (real and imaginary parts) of an insonifying ultrasonic pressure field. In addition, we

considered the effect of phase cancellation at the face of a finite-aperture, piezoelectric receiver.

In our continuing effort to understand the effects that variations of physical parameters of

the experimental system have on material property measurements, we investigate the role of the f-

number (ratio of the focal length to the diameter) of the transmitting transducer in experimental

measurements. As in previous reports, we consider issues relevant to the application of single-

element, one-dimensional, and two-dimensional array technologies towards probing the

mechanical properties of advanced engineering composites and structures. We provide

comparisons between phase-sensitive and phase-insensitive detection methods for determination of

textile composite structure parameters. We also compare phase-sensitive and phase-insensitive

apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at

the face of a finite-aperture, single-element, piezoelectric receiver. Furthermore, we extend our

work on ultrasonic beam prof'fle issues through investigation of the effects of focusing planar

pseudo-array measurements.

In Section V.A of this Progress Report we briefly describe the experimental arrangement

and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a

114



thin woven composite. SectionV.B detailsthe analysisof the experimentaldataand modeling

simulations,andis followed by theexperimentalandsimulationresultsin SectionV.C. Finally, a

discussion of the observationsand conclusionsare found in Section V.D and Section V.E,

respectively.

A. Experimental Arrangement and Methods

A.I Thin Woven Composite

The thin composite studied was a five-harness biaxial weave cloth (a single layer) set in an

epoxy. The tow and fill bundles of the cloth were approximately 2 mm in height. Finally, the

mean thickness of the cloth was on the order of 0.5 mm.

A.2 Measurement Methods

All measurements in this study were performed in a water tank using two types of

piezoelectric transducers with nominal center frequencies of 5 MHz (Panametrics V309) as the

transmitting transducer. Either an f/4 (0.5"-diameter, 2" focal length) or an f/8 (0.5"-diameter, 4"

focal length) transducer was used for the measurements. The thin woven composite was

positioned in the focal plane of the transmitting transducer and oriented normal to the beam axis of

the transducer. A lead tape marker was affixed to the composite for position recognition purposes.

A 0.5 mm diameter PVDF, broadband, needle hydrophone (Force Institute, Type MI1648) was

used as the receiving transducer. A series of scans (C-scan, line scan, pseudo-array scan) were

performed on the composite with each transmitting transducer (f/4 and f/8). A corresponding scan

of a reference water path was also performed for each measurement of the composite.

A C-scan of the thin woven composite was performed for determination of the region

interrogated in the pseudo-array measurements. The positions of the transmitting transducer and
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receivinghydrophonewereundermotioncontrol while thecompositeremainedstationary.For the

caseof the f/8 transmittingtransducer,thereceivinghydrophonewaspositionedon the axis of and

20 mm beyondthefocal planeof thetransmittingtransducer.For the caseof the f/4 transmitting

transducer,thereceiverwasagainpositionedon theaxisof the transmittingtransducerand20 mm

beyondthe compositeplane. However, the transmittingtransducerwaspositioned2.5" from the

front faceof thecomposite. (This positioningwaschosenfor alignmentconcernsof the pseudo-

arraymeasurementsin additionto aphysicalconstraintof the gantryapparatus.) In eachcase,the

front sideof thecompositewaspositionedin thefocalplaneof thetransmittingtransducer.The C-

scanconsistedof 50sitesby 50siteswith 1mm siteseparationto insurecoverageof the leadtape

marker,portions of the samplemountingapparatus,andthe region to be investigatedduring the

pseudo-arraymeasurements. In addition to its position recognitionpurpose, the C-scan also

servedasanadditionalmeasurementof theapparentsignallossof thethin wovencomposite.

The experimentalsetupwas modified for the line scan and pseudo-array scan that was

performed with each type of transmitting transducer (f/4 and f/8). The transmitting transducer was

fixed with respect to the experimental setup while the composite and the receiving hydrophone

were under computer control with one degree of motion and three degrees of motion, respectively.

It was necessary to perform a line scan of the composite to determine the region of the composite

insonified during the pseudo-array measurements. The hydrophone was positioned 20 mm behind

the focal plane of the transmitting transducer for both the f/4 and f/8 transmitting transducers. With

the positions of the transmitting transducer and receiving hydrophone fixed, the composite was

translated in the horizontal direction perpendicular to the transmitter-receiver axis during the line

scans. For the pseudo-array measurements, the hydrophone sampled the ultrasonic pressure field

in a two-dimensional array composed of 65 sites by 65 sites (4225 total sites) with 0.25 mm

separation between adjacent sites for a total sampled area of 16 mm by 16 mm.
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Figure 1. Experimental setup. This figure represents the equipment arrangement for the pseudo-
array scans of the thin woven composite. Note that the one degree of freedom for the composite is
not detailed. For the C-scan setup, the motions of the transmitter and receiver are synchronized
and have three degrees of freedom.

Figure 1 is a schematic diagram showing the data acquisition system used in this

investigation. For further details regarding the experimental arrangement and data acquisition

protocol please refer to Section II of the previous Progress Reports which are included in the CD-

ROM version of this report.
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B. Data Analysis and Modeling

Following a brief description of the software utilized, we describe the data reduction

techniques for analysis of the C-scan and pseudo-array measurements. We then discuss a model

for spherically focusing an ultrasonic field as seen by a two-dimensional planar array. We

conclude this section with the procedure for determination of the apparent signal loss due to the

composite.

B.1 Software

Data analyses and visualization were performed on a Power Macintosh using in-house

custom software written in the C programming language in conjunction with a commercial imaging

software package (Transform 3.3, Fortner Software, Sterling, VA), a commercial data

management package (Noesys 1.2, Fortner Software, Sterling, VA) and a commercial graphing

package (IGOR 3.12, WaveMetrics, Lake Oswego, OR).

B.2 C-Scan Measurement Analysis

For the C-scan measurements, the time-averaged rf trace acquired at each site was Fast

Fourier Transformed to determine the spectral content of the time-domain rf trace. The power

spectrum was calculated at each site of the two-dimensional C-scan as well as for a water path

reference trace. Apparent signal loss was determined using a log spectral subtraction technique.

For each transmitting transducer data set, the average apparent signal loss was calculated at three

distinct frequencies (3 MHz, 5 MHz, and 7 MHz).

B.3 Pseudo-Array Measurement Analysis

For the two-dimensional pseudo-array scans, the time-averaged rf trace acquired at each

pseudo-array site was Fast Fourier Transformed to determine the spectral content of the time-
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domain rf trace. Discretefrequencydatawere extractedfrom the real and imaginary parts of

Fourier transform of the broadbandrf traceto provide a single-frequencyrepresentationof the

respectiveparts of the pressurefield.. Themagnitudeof theFourier transformwascalculatedby

taking thesquareroot of thesumof thesquaresof thereal andimaginarypartsof theFast Fourier

Transform.

For both the f/4 andf/8 transducers,weacquiredtwo setsof data(onewaterpathand one

compositepath) asmentionedabove. For eachtransmittingtransducerdataset, single-frequency

imageanalysiswasperformedatthreedistinctfrequencies.We calculatedthemagnitude,real, and

imaginarypartsof thepressurefield near3 MHz, 5 MHz, and7 MHz.

B.3a Magnitude Image Construction

Image construction of the experimentally measured single-freq/iency magnitude of the

ultrasonic pressure field was performed using Transform 3.3. For the magnitude images, the

entire measured region (65 sites by 65 sites, i.e., 16 mm by 16 mm) of the pseudo-array appears.

All magnitude of the pressure field images are presented using the grayscale mapping shown in

Figure 2. Darker regions correspond to larger relative pressure magnitudes and lighter regions

correspond to smaller relative pressure magnitudes. The images were not interpolated as in

previous reports due to the improved resolution of the receiving system compared to previous data

acquisitions. Figure 3 shows a representative pressure magnitude image with relevant dimensions.

Smaller relative

pressures

Larger relative

pressures

Figure 2. Grayscale mapping used for pressure magnitude images.
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16 mm

16 mm

Figure 3. Representative pressure magnitude image of an ultrasonic pressure field propagated
along a water path.
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B.3b Real and Imaginary Image Construction

Image construction of the experimentally measured single-frequency real and imaginary

parts of the ultrasonic pressure field was also performed using Transform 3.3. All images of the

real and imaginary parts of the pressure field are presented using the color mapping shown in

Figure 4. Red regions correspond to positive values, blue regions correspond to negative values,

and white corresponds to neutral values. The particttlar mapping was chosen so as to emphasize

the mixing of positive and negative values of real and imaginary signals over a spatial region.

Similar to the pressure magnitude images, the entire region of the pseudo-array appears and no

interpolation of the image was performed. Figure 5 shows representative real and imaginary

images for a reference path signal. Please note that in previous reports we have referred to the real

and imaginary parts of the pressure field as the in-phase and quadrature fields.

Negative values Positive values

Neutral values (zero)

Figure 4. Colorscale mapping used for real and imaginary images.
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Figure 5. Representative (a) real and (b) imaginary images of an ultrasonic pressure field
propagated along a water path.

B.4 Focusing of Planar Array Measurements

In each of the previous reports 1-3, we have measured or modeled ultrasonic fields as seen

specifically by a two-dimensional planar array. We extend our investigation of ultrasonic beam

profiles through the spherical focusing of modeled ultrasonic fields propagated toward a plane

perpendicular to the direction of propagation. As in previous reports 1,2, we model the propagation

of ultrasonic fields in water using an angular spectrum-based approach. We examine the 5 MHz

ultrasonic field generated by an f/4 (0.5" diameter, 2" focal length) transducer and an f/8 (0.5"

diameter, 4" focal length) transducer. In each case, the field is propagated a distance twice the

focal length of the transducer. The simulation consisted of a 512 by 512 array with 0.25 mm site

separation. The spatial extent of the simulation prevented possible source replication artifacts in the

region of interest. The central 63 by 63 array sites (our region of interest) were extracted for
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visualizationof the real and imaginaryparts of the propagatedfield. This choice of region is

comparableto thearraysizeemployedduring thepseudo-arraymeasurements.

Sphericalfocusing of the two-dimensionalpseudo-arraywas achievedby applying the

appropriatetime delays (via the Fourier shift theorem)to the simulatedultrasonic field at each

position in the array in order to focus at a point a distanceof one focal length from the center

position of the arrayon a line perpendicularto the planeof the array. Thesetime delays were

determinedby calculatingthe differencebetweenthetime-of-flight of anultrasonicfield in water

from eachelementin thearrayto the focalpoint andthe time-of-flight of anultrasonicwave from

thecenterarrayelementpositionto thefocalpoint. Figure 6 schematicallyillustratesthe geometry

usedin thedeterminationof theappropriatetime shiftsusedfor sphericalfocusing. In this figure,

D representsthedistancebetweenthecenterpositionin thearrayandthedesiredfocalpoint alonga

line perpendicularto the planeof the array (D = 2" for the f/4 simulation, D = 4" for the f/8

simulation). The distancebetweenthe (m, n) position in the array and the center position is

represented by r,,,.. The distance between the (m, n) position in the array and the focal point,

represented by R,,,, is determined from

R"n-'4F2mn+O 2 • (1)

The difference, Ad"., in the distance between the (m, n) array position and the focal point and the

center array position and the focal point is found from

Ad,.. = R,., - D=_]r L + D 2 - D . (2)

The time shift, At,... required to focus an ultrasonic field at a given array element (m, n) at the

desired focal point is expressed as

At,.. At/,.. _]r_+D2-D
C ¢

(3)

where c is the velocity of ultrasound in water. The shifts applied to spherically focus the two-

dimensional array are graphically represented in Figure 7.

123



Figure 6.
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Geometry used in the determination of the time shifts to be used for spherical
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Figure 7. Three dimensional graphical representation of time shifts for spherical focusing.

B.5 Apparent Signal Loss Analysis

Extending our qualitative analysis of the magnitude, real, and imaginary images constructed

from the pseudo-array measurements, we calculate the apparent signal loss of the ultrasonic

pressure field due to transmission through the thin woven composite. The apparent signal loss

calculations have not taken into account diffraction corrections or transmission losses.

We calculate the apparent signal loss by two approaches. 4-10 The first method simulates

the two-dimensional pseudo-array as a 0.5"-diameter phase-sensitive planar receiver. In this

case, the receiver is sensitive to the phase of the pressure field. The second method uses the

pseudo-array to simulate a 0.5"-diameter phase-insensitive planar receiver. In contrast to a

phase-sensitive receiver, a phase-insensitive receiver is not sensitive to the phase of the pressure

field but instead is sensitive to the magnitude or energy of the pressure field. For the present case,
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we will alwaysbeconsideringaphase-insensitivereceiverthatis sensitiveto theenergy(power)of

the pressurefield (i.e., anacoustoelectric-likereceiver6,11,12).For further detailsof the apparent

signallosscalculation,pleaserefer to thepreviousreport.

C. Results

The organizationof theC-scanand pseudo-arrayreceiverplaneimagesgenerally follows

theoutlineof theDataAnalysisandModelingsection. Figure 8 and Figure 9 comparetheC-scan

measuredapparentsignallossesat 3 MHz, 5 MHz, and7 MHz for both thef/4 andf/8 transmitting

transducers,respectively. Figure 10depictsa typical region interrogatedduring the hydrophone

pseudo-arraymeasurements. We comparethe magnitude, real, and imaginary parts of the

ultrasonic fields (3 MHz, 5 MHz, and7 MHz) measuredby thehydrophonepseudo-arraywhen

propagatedthrougha waterpathonly and a water pathwith the thin woven compositeinserted

(compositepath). Figure 11 throughFigure 13are thecomparisonsfor the f/4 transducerdata,

andFigure 14throughFigure 16arethecomparisonsfor thef/8 transducerdata. We nextcompare

the magnitude,real, andimaginarypartsof the ultrasonicfields (3 MHz, 5 MHz, and 7 MHz)

propagatedthrough a waterpathor a compositepath and measuredby the hydrophonepseudo-

arraywhen excitedby the f/4 transducerand the f/8 transducer. Figure 17 through Figure 19

comparethewaterpathdatafor thetwo transducers,andFigure20throughFigure 22 comparethe

compositepathdatafor thef/4 andf/8 transducers.

For eachof thesix-panelfigures(Figure 11throughFigure22) imagesaredisplayedusing

acommondatafloor anddataceiling to calculatethe grayscale(magnitude)or colorscale(real and

imaginary)bin size. Therefore,the samedatavaluesaremappedto thesamegray or color value

for the imageswithin eachfigure (i.e., bin sizesare the same). The use of this grayscaleand

colorscalemappingtechniquepermitsdirectcomparisonof magnitudeimagesandreal (imaginary)

images,respectively,within eachfigure. The grayscaleandcolorscalearenotedfor eachfigure.
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3MHz 5MHz 7MHz

f/4

2.0 dB 16

Figure 8. Apparent signal loss determined by through-transmission C-scan measurements with
the f/4 transmitting transducer. The signal losses of the lead tape marker and outer steel frame
were significantly greater than the signal loss of the composite. A value of 16 dB was chosen to

threshold these larger values of signal loss.

3MHz 5MHz 7MHz

f/8

2.0 dB 16

Figure 9. Apparent signal loss determined by through-transmission C-scan measurements with
the f/8 transmitting transducer. The signal losses of the lead tape marker and outer steel frame were

significantly greater than the signal loss of the composite. A value of 16 dB was chosen to
threshold these larger values of signal loss.
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Figure 10. Apparentsignal lossC-scanimagewith a representativefootprint of the hydrophone
pseudo-arraydepictedby thedarksquareoutline.
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Figure 11. Comparison of magnitude, real, and imaginary receiver plane images of the
measured 3 MHz ultrasonic field generated by the f/4 transducer along a water path and a
composite path. The hydrophone scanning plane was positioned about 20 mm beyond the nominal
focal plane (2") of the transmitting transducer (-70 mm total).
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Water Path vs. Composite Path (if4 transducer, 5 MHz)

....i:ii::#:_ii_i_iii:::

_,_,ilO, iilii:_:i
'!_!!_:_il;;ii!!!!::

......

:)..

II

!!iii _:!ii:!i!_

Magnitude Real

ii! I¸ :: ::i:i:i:i::::::::::.::: :

:!

Imaginary
::::::::::::::::::::::::::::::::::::::::::::::::::

Peak Peak Negative Peak Positive
0 Pressure Pressure Pressure

Figure 12. Comparison of magnitude, real, and imaginary receiver plane images of the
measured 5 MHz ultrasonic field generated by the f/4 transducer along a water path and a
composite path. The hydrophone scanning plane was positioned about 20 mm beyond the nominal
focal plane (2") of the transmitting transducer (-70 mm total).
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Water Path vs. Composite Path (f/4 transducer, 7 MHz)
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Figure 13. Comparison of magnitude, real, and imaginary receiver plane images of the
measured 7 MHz ultrasonic field generated by the if4 transducer along a water path and a
composite path. The hydrophone scanning plane was positioned about 20 mm beyond the nominal

focal plane (2") of the transmitting transducer (-70 mm total).
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Figure 14. Comparison of magnitude, real, and imaginary receiver plane images of the
measured 3 MHz ultrasonic field generated by the f/8 transducer along a water path and a
composite path. The hydrophone scanning plane was positioned about 20 mm beyond the nominal
focal plane (4") of the transmitting transducer (~ 121 mm total).
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Water Path vs. Composite Path (f/8 transducer, 5 MHz)
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Figure 15. Comparison of magnitude, real, and imaginary receiver plane images of the
measured 5 MHz ultrasonic field generated by the f/8 transducer along a water path and a
composite path. The hydrophone scanning plane was positioned about 20 mm beyond the nominal
focal plane (4") of the transmitting transducer (-121 mm total).
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Water Path vs. Composite Path (f/8 transducer, 7 MHz)
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Figure 16. Comparison of magnitude, real, and imaginary receiver plane images of the
measured 7 MHz ultrasonic field generated by the if8 transducer along a water path and a
composite path. The hydrophone scanning plane was positioned about 20 mm beyond the nominal
focal plane (4") of the transmitting transducer (-121 mm total).
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Figure 17. Comparison of magnitude, real, and imaginary receiver plane images of the
measured 3 MHz ultrasonic field generated by the f/4 and f/8 transducers along a water path. The
hydrophone scanning plane was positioned about 20 mm beyond the nominal focal plane (2" or 4")
of the transmitting transducer (f/4 or f/8).
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Figure 18. Comparison of magnitude, real, and imaginary receiver plane images of the measured
5 MHz ultrasonic field generated by the f/4 and f/8 transducers along a water path. The
hydrophone scanning plane was positioned about 20 mm beyond the nominal focal plane (2" or 4")
of the transmitting transducer (f/4 or f/8).
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Figure 19. Comparison of magnitude, real, and imaginary receiver plane images of the
measured 7 MHz ultrasonic field generated by the f/4 and f/8 transducers along a water path. The
hydrophone scanning plane was positioned about 20 mm beyond the nominal focal plane (2" or 4")
of the transmitting transducer (f/4 or f/8).
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Figure 20. Comparison of magnitude, real, and imaginary receiver plane images of the
measured 3 MHz ultrasonic field generated by the f/4 and f/8 transducers along a composite path.
The hydrophone scanning plane was positioned about 20 mm beyond the nominal focal plane (2"
or 4") of the transmitting transducer (f/4 or f/8).
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Figure 21. Comparison of magnitude, real, and imaginary receiver plane images of the
measured 5 MHz ultrasonic field generated by the f/4 and f/8 transducers along a composite path.
The hydrophone scanning plane was positioned about 20 mm beyond the nominal focal plane (2"
or 4") of the transmitting transducer (f/4 or f/8).
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Figure 22. Comparison of magnitude, real, and imaginary receiver plane images of the
measured 7 MHz ultrasonic field generated by the f/4 and f/8 transducers along a composite path.
The hydrophone scanning plane was positioned about 20 mm beyond the nominal focal plane (2"
or 4") of the transmitting transducer (f/4 or f/8).
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We now demonstrate the effect of spherical focusing of a simulated pressure field by

investigation of the real and imaginary parts of the field. Figure 23 shows the planar and

spherically-focused real and imaginary parts of a 5 MHz ultrasonic field propagated to twice the

nominal focal length of an f/4 transducer (4"). Figure 24, similarly, compares the planar and

spherically-focused real and imaginary parts of a 5 MHz ultrasonic field propagated to twice the

nominal focal length of an if8 transducer (8").

Focused

Planar vs. Focused (f/4 transducer, 5 MHz)

Real Imaginary

Figure 23. Comparison of the real and imaginary parts of planar and focused ultrasonic fields
for an if4 transducer (0.5" diameter, 2" focal length). The field is propagated to twice the focal
length (4") of the transducer. These images are 63 by 63 arrays with 0.25 site separation for a total
area of 15.5 mm by 15.5 mm. The focused fields have a 2" focal length.
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Planar vs. Focused (f/8 transducer, 5 MHz)
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Imaginary
Figure 24. Comparison of the real and imaginary parts of planar and focused ultrasonic fields
for an f/8 transducer (0.5" diameter, 4" focal length). The field is propagated to twice the focal
length (8") of the transducer. These images are 63 by 63 arrays with 0.25 site separation for a total
area of 15.5 mm by 15.5 mm. The focused fields have a 4" focal length.

Figure 25 compares the average apparent signal losses for the C-scan measurements using

the if4 and if8 transmitting transducers. The apparent signal losses are averaged in the linear

domain for those sites that are within the footprint of the hydrophone pseudo-array (see Figure

10).
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Comparison of average apparent signal losses for the C-scan measurements over a
17 mm by 17 mm area using the f/4 and f/8 transmitting transducers.

The phase-sensitive and phase-insensitive pseudo-array receiver analyses are shown in

Figure 26 through Figure 34. The phase-sensitive and phase-insensitive power spectra for the

water path and composite path using the f/4 transducer are shown in Figure 26 and Figure 27,

respectively. The phase-sensitive and phase-insensitive apparent signal losses are shown in Figure

28. In addition, Figure 29 provides the phase-sensitive and phase-insensitive apparent signal

losses for the case where the phase-insensitive water-path power spectrum is used for both

apparent signal loss calculations. The use of the phase-insensitive water-path power spectrum with

the phase-sensitive composite-path power spectrum, while not technically a valid comparison, is

intended to emphasizethe phase cancellation at the face of the phase-sensitive pseudo-array

receiver for the composite path. Figure 30 through Figure 33 shows the analogous power spectra

and apparent signal losses for the f/8 transducer. Lastly, Figure 34 compares the phase-insensitive

apparent signal loss for the f/4 and f/8 transducers.
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Figure 26. Comparison of phase-sensitive and phase-insensitive water path power spectra
calculated for a 0.5"-diameter pseudo-array receiver. The scanning plane of the hydrophone
pseudo-array was positioned 20 mm beyond the nominal focal plane of the f/4 transmitting
transducer.
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Figure 27. Comparison of phase-sensitive and phase-insensitive composite path power spectra
calculated for a 0.5"-diameter pseudo-array receiver. The scanning plane of the hydrophone
pseudo-array was positioned 20 mm beyond the nominal focal plane of the f/4 transmitting
transducer.
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Figure 28. Comparison of phase-sensitive and phase-insensitive apparent signal loss due to the
thin woven composite, calculated for a 0.5"-diameter pseudo-array receiver. The scanning plane
of the hydrophone pseudo-array was positioned 20 mm beyond the nominal focal plane of the f/4
transmitting transducer.
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Figure 29. Comparison of phase-sensitive and phase-insensitive apparent signal loss (using the

phase-insensitive water path power spectrum as a common reference) due to the thin woven
composite, calculated for a 0.5"-diameter pseudo-array receiver. The scanning plane of the
hydrophone pseudo-array was positioned 20 mm beyond the nominal focal plane of the f/4

transmitting transducer.
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Figure 30. Comparison of phase-sensitive and phase-insensitive water path power spectra
calculated for a 0.5"-diameter-pseudo-array receiver. The scanning plane of the hydrophone
pseudo-array was positioned 20 mm beyond the nominal focal plane of the f/8 transmitting
transducer.
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Figure 31. Comparison of phase-sensitive and phase-insensitive composite path power spectra
calculated for a 0.5"-diameter pseudo-array receiver. The scanning plane of the hydrophone

pseudo-array was positioned 20 mm beyond the nominal focal plane of the f/8 transmitting
transducer.
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Figure 32. Comparison of phase-sensitive and phase-insensitive apparent signal loss due to the

thin woven composite, calculated for a 0.5"-diameter pseudo-array receiver. The scanning plane
of the hydrophone pseudo-array was positioned 20 mm beyond the nominal focal plane of the f/8
transmitting transducer.
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Figure 33. Comparison of phase-sensitive and phase-insensitive apparent signal loss (using the
phase-insensitive water path power spectrum as a common reference) due to the thin woven
composite, calculated for a 0.5"-diameter pseudo-array receiver. The scanning plane of the

hydrophone pseudo-array was positioned 20 mm beyond the nominal focal plane of the f/8
transmitting transducer.
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Figure 34. Comparison of the f/4 and f/8 phase-insensitive apparent signal loss due to the thin

woven composite, calculated for a 0.5"-diameter pseudo-an'ay receiver. The scanning plane of the
hydrophone pseudo-array was positioned 20 mm beyond the nominal focal plane of the f/4 or f/8
transmitting transducer, respectively.

D. Discussion

This section provides commentary on the Results presented in the previous section. Initial

comments concern qualitative interpretations of the receiver plane images, and follow with a

discussion of the quantitative results. The final part of this section considers issues that have not

been fully addressed in previous reports.
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D.1 Qualitative Interpretation

D.la Apparent Signal Loss C.Scan Measurement

Figure 8 and Figure 9 compare apparent signal loss images at three distinct frequencies

derived from through-transmission C-scan measurements of the thin woven composite using both

the f/4 and f/8 transmitting transducers, respectively. In each image, the dark outer border

represents the stainless steel frame used to mount the composite sample. The large, dark triangular

region in each panel is a lead tape marker that provides position recognition for the pseudo-array

scans as depicted in Figure 10. We observe finer detail resolution with increasing frequency in

addition to increased signal loss, as would be expected.

D.lb Pressure fields of the f/4 and f/8 transducers

Of primary interest for this report is a comparison of the measured ultrasonic fields of the

f/4 and f/8 transmitting transducers (Figure 17 through Figure 22). For discussions concerning

comparison of water path and composite path receiver plane images (Figure 11 through Figure 16)

for a given transmitting transducer, please refer to previous Progress Reports 1,3. The conclusions

of previous experimental measurements are valid for these current measurements as well for

comparison of water path and composite path receiver plane images.

A comparison of the measured ultrasonic pressure fields of the different f-number

transducers indicates that the differences in beam diameter (as defined by the 6-dB down region for

the pressure magnitude) is a significant feature. For circular-aperture transmitters, the 6-dB beam

diameter in the focal zone is linearly proportional to the f-number of the transmitting

transducer. 13,14 The choice of the f-number for the transmitter can play a role when a priori

information is available regarding typical flaw dimensions for a given material. With available one-

and two-dimensional ultrasonic arrays, it is conceivable that f-numbers can be tailored for optimal

interrogation of a given composite.
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D.lc Spherical focusing of fields

The issue of phase cancellation across the face of a finite-aperture, piezoelectric receiver has

been of continuing interest as part of this grant. Previously, we have only concerned ourselves

with the ultrasonic fields as measured by a planar pseudo-array. Here, we extend this work to

consider the effect on phase (real and imaginary parts) of ultrasonic fields by focusing. Figure 23

and Figure 24 demonstrate the effect spherical focusing has on the real and imaginary parts of the

ultrasonic field for simulations with a transmitting transducer (f/4 or f/8) and a two-dimensional

planar receive array separated a distance twice the focal length of the transmit transducer along a

water path. In each case, the planar receive array is spherically focused at the focal point of the

transmitting transducer. If we were to then simulate a finite-aperture, piezoelectric receiver, the

amount of phase cancellation across the face of the finite-aperture, piezoelectric receiver would be

greatly reduced, and virtually eliminated for the case of an f/8 receiver of the type considered"

within this report. This observation can be significant for material property measurements which

rely upon ultrasonic parameters that are concerned with the energy of the received ultrasonic field.

D.2 Quantitative Interpretation

D.2a C-Scan Apparent Signal Loss Measurements

We achieve results for the C-scan measurements that are consistent with previous and

current phase-insensitive receiver simulations from the experimental hydrophone pseudo-array

measurements. One possible explanation for the ~1 dB discrepancy between the apparent signal

losses for the C-scan measurements using the f/4 and f/8 transmitting transducers could be the

positioning of the thin woven composite with respect to the transmitting transducer for the case of

the 174 transducer. The physical constraints of the C-scan apparatus did not permit positioning the

thin composite in the focal plane of the f/4 transducer.
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D.2b Phase-Sensitive and Phase-Insensitive Apparent Signal Loss

Phase-sensitive results compared with phase-insensitive results are consistent with results

of the previous Progress Report. Phase-insensitive results, comparing signal loss for the f/4 and

f/8 transmitting transducers, have the same frequency dependence, but the absolute level of the f/4

data lies about 2 dB above the f/8 data. In addition to the absolute level of signal loss, the

frequency dependence of the apparent signal loss is also of interest. It is not immediately intuitive

why we do not measure a monotonically increasing apparent signal loss as has been done for other

types of composites, such as graphite/epoxy laminate composites. J5 This behavior, upon further

investigation, is most likely accounted for by a frequency-dependent transmission loss due to a thin

sample. We discuss this in more detail below.

D.3 Continuing Issues: Alignment and Signal Loss

There are issues that arise from the current investigation as well as previous investigations

of ultrasonic beam profiles that have not been fully addressed. We have observed a lack of

symmetry in the real and imaginary images of the ultrasonic field that would not be expected for

transmission through only a water path. This lack of symmetry leads to questions of proper

alignment of our two-dimensional planar pseudo-array. We have previously commented that

alignment procedures that rely only upon an optimization of a reference power spectrum may not

be adequate for alignment of two-dimensional arrays. Figure 35 demonstrates the effect a slight

misalignment (-0.5 °) of the receiving plane with respect to the direction of propagation of the

transmitted field can have on the received ultrasonic field. Previously 1, we suggested that a

monitoring of the real and imaginary parts of the pressure field at a given frequency may provide

an improved alignment protocol. In this effort of improving alignment of our transmitting

transducer and receiving pseudo-array, we have chosen to indirectly monitor the real and imaginary

parts of the pressure field by observing shifts in time-of-flights of ultrasonic signals across the

two-dimensional pseudo-array in addition to observing the reference power spectrum. Through an
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iterativetechniqueof minimizingshiftsin time-of-flightsof pulse/echoesoff anadjustablestainless

steelplate,wecan improvethealignmentof the transducerwith respectto the scanningreceive

plane. Thephenomenonof phasecancellationacrossthe faceof a finite-aperture,piezoelectric

receiveris sensitiveto evenmodestchangesin path lengths. What can readilybe detectedas

misalignmentin therealandimaginaryimagesisnotapparentin themagnitude(or power) images,

asdemonstratedin Figure35. In additionto alignmentbenefits,we havefound this techniqueto

be sensitiveenoughto observeaccuracylimits of our computer-controlledmotion controller

positioning.

Aligned vs. Misaligned (f/8 transducer, 5 MHz)
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Figure 35. Comparison of simulated 5 MHz ultrasonic fields propagated along a water path
(-120 mm). The top row of images is for the case of ideal alignment of a two-dimensional array
with respect to a transmitting transducer (0.5" diameter, 4" focal length). The bottom row of
images indicates the effect a slight misalignment (-0.5 °) can have on the received ultrasonic field.
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As mentionedabove, the non-monotonicbehavior of the apparentsignal loss may be

partially explainedby considerationof the transmissionloss due to the thin woven composite

actingasa thin interface.Accordingto asimpletransmissionline modelj6, selective frequencies of

ultrasound can be passed through the thin sample with only negligible transmission losses, while

other frequencies suffer relatively large losses. In principle, the apparent signal loss that we

measure could be compensated for the transmission loss due to a thin interface. However, a

difficulty in applying the transmission line model to the thin composite we have investigated is the

non-uniform thickness of the composite. The thickness of the thin sample plays a significant role

in the selection of which frequencies of ultrasound are transmitted through the thin interface with

negligible losses, and which are attenuated.

E. Conclusions

An overall goal of this research has been to enhance our understanding of the scientific

principles necessary to develop advanced ultrasonic nondestructive techniques for the quantitative

characterization of advanced composite structures. To this end, we have investigated a thin woven

composite (5-harness biaxial weave). We have studied the effects that variations of the physical

parameters of the experimental setup can have on the ultrasonic determination of the material

properties for this thin composite. In particular, we have considered the variation of the nominal

center frequency and the f-number of the transmitting transducer which in turn address issues such

as focusing and beam spread of ultrasonic fields.

This study has employed a planar, two-dimensional, receiving pseudo-array that has

permitted investigation of the diffraction patterns of ultrasonic fields. Distortion of the ultrasonic

field due to the spatial anisotropy of the thin composite has prompted investigation of the

phenomenon of phase cancellation at the face of a finite-aperture, piezoelectric receiver. We have
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performedphase-sensitiveand phase-insensitiveanalysesto provide a measureof the amountof

phasecancellationat the face of a finite-aperture,piezoelectricreceiver. The pursuit of robust

measurementsof receivedenergy(i.e., thosenot susceptibleto phasecancellationat thefaceof a

finite-aperture,piezoelectricreceiver)supportsthedevelopmentof robust techniquesto determine

materialpropertiesfrom measuredultrasonicparameters.

During this grantperiod we haveachieveda majority of the goalswe setin theproposal.

Namely,we haveinvestigatedtheeffectsof thef-numberandnominalcenterfrequency(i.e., focal

zone parameters)of the transmittingtransduceron estimatesof signal loss of the thin woven

composite,aswell ascomparedphase-sensitiveandphase-insensitiveestimatesof thesignal loss.

Our study has also led to new avenuesof investigation,such as the aforementionedalignment

issues,that were not initially foreseenbut werenonethelessof substantialmerit. In addition, the

researchhasprovided a basisfor designingfuture investigations. Onesuchextensionwould be

the applicationof observationsfrom measurementsusing a two-dimensionalpseudo-array to

measurements using a true two-dimensional array.

154



F. References

1. James G. Miller, "Ultrasonic Nondestructive Evaluation Techniques Applied to

Quantitative Characterization of Textile Composite Materials", NASA, Progress Report, Report

Number: NAG 1-1848, (December, 1997).

2. James G. Miller, "Ultrasonic Nondestructive Evaluation Techniques Applied to

Quantitative Characterization of Textile Composite Materials", NASA, Progress Report, Report

Number: NAG 1-1848, (December, 1996).

3. James G. Miller, "Ultrasonic Nondestructive Evaluation Techniques Applied to

Quantitative Characterization of Textile Composite Materials", NASA, Progress Report, Report

Number: NAG 1-1848, (June, 1997).

4. Lawrence J. Busse, Electron-Phonon Interactions in Piezoelectric Semiconductors for

the Phase Insensitive Detection of Ultrasound, Doctor of Philosophy Thesis, Washington

University, (1979).

5. L.J. Busse and J.G. Miller, "A comparison of f'mite aperture phase sensitive and phase

insensitive detection in the near field of inhomogeneous material"(Published 1981), pp. 617-626.

6. L.J. Busse and J.G. Miller, "Response Characteristics of a Finite Aperture, Phase

Insensitive Ultrasonic Receiver Based Upon the Acoustoelectric Effect", Journal. Acoustical

Society of America, Vol. 70, pp. 1370-1376, (1981).

7. Mark R. Holland and J.G. Miller, "Phase-Insensitive and Phase-Sensitive Quantitative

Imaging of Scattered Ultrasound Using a Two-Dimensional Pseudo-Array"( Chicago, Published

1988), Vol. 88 CH 2578-3, pp. 815-819.

8. Patrick H. Johnston, Phase-Insensitive Detection and the Method of Moments for

Ultrasonic Tissue Characterization, Doctor of Philosophy Thesis, Washington University,

(1985).

155



9. Patrick H. Johnstonand J.G. Miller, "A Comparisonof BackscatterMeasuredby Phase-

SensitiveandPhase-InsensitiveDetection"(Published1985),pp.827-831.

10. Patrick H. JohnstonandAgusA. Ananda,"Therole of phasecancellationin the ultrasonic

NDE of stitchedgraphite-epoxycomposites"(Orlando,Published1991), Vol. 91CH3079-1, pp.

845-848.

11. JosephS.Heyman,Ultrasonic Coupling to Optically Generated Charge Carriers in CdS:

Physical Phenomena and Applications, Doctor of Philosophy Thesis, Washington University,

(1975).

12. J.S. Heyman, "Phase insensitive acoustoelectric transducer", Journal. Acoustical Society

of America, Vol. 64, pp. 243-9, (1978).

13. J. Krautkramer and H. Krautkr_,aer, Ultrasonic testing of materials, 4th fully rev. ed.,

(Springer-Verlag, Berlin, 1990).

14. Panametrics Inc., "Technical Notes: Ultrasonic Transducers", Publication P393,

(Waltham, MA, 1993).

15. S.M. Handley, M.S. Hughes, J.G. Miller, and E.I. Madaras, "Characterization of

Porosity in Graphite Epoxy Composite Laminates With Polar Backscatter and Frequency

Dependent Attenuation"( Denver, Published 1987), Vol. 87CH2492-7, pp. 827-830.

16. Jack Blitz, Fundamentals of ultrasonics, 2nd ed., (Butterworths, London, 1967).

156


